https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Simultaneous_eating_algorithm Simultaneous eating algorithm - Revision history 2025-05-31T00:44:30Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.3 https://en.wikipedia.org/w/index.php?title=Simultaneous_eating_algorithm&diff=1270621558&oldid=prev Rob Formi at 12:15, 20 January 2025 2025-01-20T12:15:34Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:15, 20 January 2025</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''simultaneous eating algorithm''' <del style="font-weight: bold; text-decoration: none;">'''(SE)</del>&lt;ref name="bm01"&gt;{{cite journal |last1=Bogomolnaia |first1=Anna |author1-link=Anna Bogomolnaia |last2=Moulin |first2=Hervé |author2-link=Hervé Moulin |year=2001 |title=A New Solution to the Random Assignment Problem |journal=Journal of Economic Theory |volume=100 |issue=2 |pages=295 |doi=10.1006/jeth.2000.2710}}&lt;/ref&gt;<del style="font-weight: bold; text-decoration: none;">''' is an algorithm for allocating divisible objects among agents with [[ordinal preferences]]. </del>"Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies '''[[SD-efficiency]]''' - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for ''at least one'' vector of [[Additive utility|additive utility functions]] consistent with the agents' item rankings).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''simultaneous eating algorithm<ins style="font-weight: bold; text-decoration: none;"> (SE)</ins>''' <ins style="font-weight: bold; text-decoration: none;">is an algorithm for allocating divisible objects among agents with [[ordinal preferences]].</ins>&lt;ref name="bm01"&gt;{{cite journal |last1=Bogomolnaia |first1=Anna |author1-link=Anna Bogomolnaia |last2=Moulin |first2=Hervé |author2-link=Hervé Moulin |year=2001 |title=A New Solution to the Random Assignment Problem |journal=Journal of Economic Theory |volume=100 |issue=2 |pages=295 |doi=10.1006/jeth.2000.2710}}&lt;/ref&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>"Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies '''[[SD-efficiency]]''' - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for ''at least one'' vector of [[Additive utility|additive utility functions]] consistent with the agents' item rankings).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>SE is parametrized by the "eating speed" of each agent. If all agents are given the same eating speed, then the SE allocation satisfies '''SD-envy-freeness''' - a strong ordinal variant of [[envy-freeness]] (it means that the allocation is envy-free for ''all'' vectors of additive utility functions consistent with the agents' item rankings). This particular variant of SE is called the '''Probabilistic Serial rule''' (PS).&lt;ref name="bm01" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>SE is parametrized by the "eating speed" of each agent. If all agents are given the same eating speed, then the SE allocation satisfies '''SD-envy-freeness''' - a strong ordinal variant of [[envy-freeness]] (it means that the allocation is envy-free for ''all'' vectors of additive utility functions consistent with the agents' item rankings). This particular variant of SE is called the '''Probabilistic Serial rule''' (PS).&lt;ref name="bm01" /&gt;</div></td> </tr> </table> Rob Formi https://en.wikipedia.org/w/index.php?title=Simultaneous_eating_algorithm&diff=1217068697&oldid=prev 132.170.212.15: /* Fairness */ 2024-04-03T17:16:14Z <p><span class="autocomment">Fairness</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:16, 3 April 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 57:</td> <td colspan="2" class="diff-lineno">Line 57:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Fairness ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Fairness ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>SE with equal eating speeds (called PS) satisfies a fairness property called ex-ante '''[[Stochastic dominance|stochastic-<del style="font-weight: bold; text-decoration: none;">dominace</del>]] [[envy-freeness]]''' (sd-envy-free). Informally it means that each agent, considering the resulting probability matrix, weakly prefers his/her own row of probabilities to the row of any other agent. Formally, for every two agents ''i'' and ''j'':</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>SE with equal eating speeds (called PS) satisfies a fairness property called ex-ante '''[[Stochastic dominance|stochastic-<ins style="font-weight: bold; text-decoration: none;">dominance</ins>]] [[envy-freeness]]''' (sd-envy-free). Informally it means that each agent, considering the resulting probability matrix, weakly prefers his/her own row of probabilities to the row of any other agent. Formally, for every two agents ''i'' and ''j'':</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Agent ''i'' has a weakly-higher probability to get his best item in row ''i'' than in row ''j''; </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Agent ''i'' has a weakly-higher probability to get his best item in row ''i'' than in row ''j''; </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Agent ''i'' has a weakly-higher probability to get one of his two best items in row ''i'' than in row ''j''; </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Agent ''i'' has a weakly-higher probability to get one of his two best items in row ''i'' than in row ''j''; </div></td> </tr> </table> 132.170.212.15 https://en.wikipedia.org/w/index.php?title=Simultaneous_eating_algorithm&diff=1217068559&oldid=prev 132.170.212.15: /* Strategy */ 2024-04-03T17:15:18Z <p><span class="autocomment">Strategy</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:15, 3 April 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 68:</td> <td colspan="2" class="diff-lineno">Line 68:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Strategy ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Strategy ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>SE is not a [[truthful mechanism]]: an agent who knows that his most preferred item is not wanted by any other agent<del style="font-weight: bold; text-decoration: none;">,</del> can manipulate the algorithm by eating his second-most preferred item, knowing that his best item will remain intact. The following is known about strategic manipulation of PS:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>SE is not a [[truthful mechanism]]: an agent who knows that his most preferred item is not wanted by any other agent can manipulate the algorithm by eating his second-most preferred item, knowing that his best item will remain intact. The following is known about strategic manipulation of PS:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* PS is truthful when agents compare bundles using the [[downward lexicographic]] relation.&lt;ref name=":2" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* PS is truthful when agents compare bundles using the [[downward lexicographic]] relation.&lt;ref name=":2" /&gt;</div></td> </tr> </table> 132.170.212.15 https://en.wikipedia.org/w/index.php?title=Simultaneous_eating_algorithm&diff=1214407463&oldid=prev BD2412: clean up spacing around commas and other punctuation fixes, replaced: ,t → , t, ,x → , x, ,y → , y, ,z → , z 2024-03-18T19:40:44Z <p>clean up spacing around commas and other punctuation fixes, replaced: ,t → , t, ,x → , x, ,y → , y, ,z → , z</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:40, 18 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 12:</td> <td colspan="2" class="diff-lineno">Line 12:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Whenever an item is fully eaten, each of the agents who ate it goes to their favorite remaining item and starts eating it in the same way, until all items are consumed.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Whenever an item is fully eaten, each of the agents who ate it goes to their favorite remaining item and starts eating it in the same way, until all items are consumed.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For each item, the fraction of that item eaten by each agent is recorded. In the context of random assignments,these fractions are considered as probabilities. Based on these probabilities, a lottery is done. The type of lottery depends on the problem:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For each item, the fraction of that item eaten by each agent is recorded. In the context of random assignments,<ins style="font-weight: bold; text-decoration: none;"> </ins>these fractions are considered as probabilities. Based on these probabilities, a lottery is done. The type of lottery depends on the problem:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If each agent is allowed to receive any number of items, then a separate lottery can be done for each item. Each item is given to one of the agents who ate a part of it, chosen at random according to the probability distribution for that item.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* If each agent is allowed to receive any number of items, then a separate lottery can be done for each item. Each item is given to one of the agents who ate a part of it, chosen at random according to the probability distribution for that item.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 20:</td> <td colspan="2" class="diff-lineno">Line 20:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Examples ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>There are four agents and four items (denoted w,x,y,z). The preferences of the agents are:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>There are four agents and four items (denoted w,<ins style="font-weight: bold; text-decoration: none;"> </ins>x,<ins style="font-weight: bold; text-decoration: none;"> </ins>y,<ins style="font-weight: bold; text-decoration: none;"> </ins>z). The preferences of the agents are:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Alice and Bob prefer w to x to y to z.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Alice and Bob prefer w to x to y to z.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Chana and Dana prefer x to w to z to y.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Chana and Dana prefer x to w to z to y.</div></td> </tr> </table> BD2412 https://en.wikipedia.org/w/index.php?title=Simultaneous_eating_algorithm&diff=1193139102&oldid=prev OAbot: Open access bot: arxiv updated in citation with #oabot. 2024-01-02T07:49:33Z <p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: arxiv updated in citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:49, 2 January 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 74:</td> <td colspan="2" class="diff-lineno">Line 74:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Older technical report: https://arxiv.org/abs/1401.6523.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Older technical report: https://arxiv.org/abs/1401.6523.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Best responses w.r.t. expected utility can cycle. However, a pure [[Nash equilibrium]] exists for any number of agents and items. When there are two agents, there are linear-time algorithms to compute a preference-profile that is in Nash equilibrium w.r.t. the original preferences. In some empirical settings, PS is less prone to manipulation. When an agent is [[Risk aversion|risk-averse]] and has no information about the other agents' strategies, his [[maximin strategy]] is to be truthful.&lt;ref name=":0" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Best responses w.r.t. expected utility can cycle. However, a pure [[Nash equilibrium]] exists for any number of agents and items. When there are two agents, there are linear-time algorithms to compute a preference-profile that is in Nash equilibrium w.r.t. the original preferences. In some empirical settings, PS is less prone to manipulation. When an agent is [[Risk aversion|risk-averse]] and has no information about the other agents' strategies, his [[maximin strategy]] is to be truthful.&lt;ref name=":0" /&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*A manipulating agent can increase his utility by a factor of at most 3/2. This was first observed empirically on random instances,&lt;ref&gt;{{Cite journal |last1=Hosseini |first1=Hadi |last2=Larson |first2=Kate |last3=Cohen |first3=Robin |date=2018-07-01 |title=Investigating the characteristics of one-sided matching mechanisms under various preferences and risk attitudes |url=https://doi.org/10.1007/s10458-018-9387-y |journal=Autonomous Agents and Multi-Agent Systems |language=en |volume=32 |issue=4 |pages=534–567 |doi=10.1007/s10458-018-9387-y |arxiv=1703.00320 |s2cid=14041902 |issn=1573-7454}}&lt;/ref&gt; and then proved formally.&lt;ref&gt;{{Cite journal |last1=Wang |first1=Zihe |last2=Wei |first2=Zhide |last3=Zhang |first3=Jie |date=2020-04-03 |title=Bounded Incentives in Manipulating the Probabilistic Serial Rule |url=https://ojs.aaai.org/index.php/AAAI/article/view/5605 |journal=Proceedings of the AAAI Conference on Artificial Intelligence |language=en |volume=34 |issue=2 |pages=2276–2283 |doi=10.1609/aaai.v34i02.5605 |s2cid=210943079 |issn=2374-3468|doi-access=free }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*A manipulating agent can increase his utility by a factor of at most 3/2. This was first observed empirically on random instances,&lt;ref&gt;{{Cite journal |last1=Hosseini |first1=Hadi |last2=Larson |first2=Kate |last3=Cohen |first3=Robin |date=2018-07-01 |title=Investigating the characteristics of one-sided matching mechanisms under various preferences and risk attitudes |url=https://doi.org/10.1007/s10458-018-9387-y |journal=Autonomous Agents and Multi-Agent Systems |language=en |volume=32 |issue=4 |pages=534–567 |doi=10.1007/s10458-018-9387-y |arxiv=1703.00320 |s2cid=14041902 |issn=1573-7454}}&lt;/ref&gt; and then proved formally.&lt;ref&gt;{{Cite journal |last1=Wang |first1=Zihe |last2=Wei |first2=Zhide |last3=Zhang |first3=Jie |date=2020-04-03 |title=Bounded Incentives in Manipulating the Probabilistic Serial Rule |url=https://ojs.aaai.org/index.php/AAAI/article/view/5605 |journal=Proceedings of the AAAI Conference on Artificial Intelligence |language=en |volume=34 |issue=2 |pages=2276–2283 |doi=10.1609/aaai.v34i02.5605 |s2cid=210943079 |issn=2374-3468|doi-access=free<ins style="font-weight: bold; text-decoration: none;"> |arxiv=2001.10640</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Note that the [[random priority item allocation|random priority]] rule, which solves the same problem as PS, is truthful.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Note that the [[random priority item allocation|random priority]] rule, which solves the same problem as PS, is truthful.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> OAbot https://en.wikipedia.org/w/index.php?title=Simultaneous_eating_algorithm&diff=1173786238&oldid=prev Headbomb: Alter: template type. Add: title. | Use this tool. Report bugs. | #UCB_Gadget 2023-09-04T11:28:27Z <p>Alter: template type. Add: title. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this tool</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | #UCB_Gadget</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:28, 4 September 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 71:</td> <td colspan="2" class="diff-lineno">Line 71:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* PS is truthful when agents compare bundles using the [[downward lexicographic]] relation.&lt;ref name=":2" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* PS is truthful when agents compare bundles using the [[downward lexicographic]] relation.&lt;ref name=":2" /&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* An agent can compute in polynomial time a [[Best response|best-response]] w.r.t. the [[downward lexicographic]] relation. When there are two agents, each agent can compute in polynomial time a best response w.r.t. expected utility. When the number of agents can vary, computing a best response w.r.t. EU is NP-hard.&lt;ref name=":0"&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del>|last1=Aziz|first1=Haris|last2=Gaspers|first2=Serge|last3=Mackenzie|first3=Simon|last4=Mattei|first4=Nicholas|last5=Narodytska|first5=Nina|last6=Walsh|first6=Toby|date=2015-05-04<del style="font-weight: bold; text-decoration: none;">|title=Manipulating the Probabilistic Serial</del> <del style="font-weight: bold; text-decoration: none;">Rule</del>|url=https://dl.acm.org/doi/abs/10.5555/2772879.2773337<del style="font-weight: bold; text-decoration: none;">|journal=Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems|series=AAMAS</del> <del style="font-weight: bold; text-decoration: none;">'15</del>|location=Istanbul, Turkey|publisher=International Foundation for Autonomous Agents and Multiagent Systems|pages=1451–1459|doi=|isbn=978-1-4503-3413-6}}.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* An agent can compute in polynomial time a [[Best response|best-response]] w.r.t. the [[downward lexicographic]] relation. When there are two agents, each agent can compute in polynomial time a best response w.r.t. expected utility. When the number of agents can vary, computing a best response w.r.t. EU is NP-hard.&lt;ref name=":0"&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins>|last1=Aziz|first1=Haris|last2=Gaspers|first2=Serge|last3=Mackenzie|first3=Simon|last4=Mattei|first4=Nicholas|last5=Narodytska|first5=Nina|last6=Walsh|first6=Toby<ins style="font-weight: bold; text-decoration: none;">|title=Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems </ins>|date=2015-05-04 |url=https://dl.acm.org/doi/abs/10.5555/2772879.2773337 |location=Istanbul, Turkey|publisher=International Foundation for Autonomous Agents and Multiagent Systems|pages=1451–1459|doi=|isbn=978-1-4503-3413-6}}.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Older technical report: https://arxiv.org/abs/1401.6523.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Older technical report: https://arxiv.org/abs/1401.6523.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Best responses w.r.t. expected utility can cycle. However, a pure [[Nash equilibrium]] exists for any number of agents and items. When there are two agents, there are linear-time algorithms to compute a preference-profile that is in Nash equilibrium w.r.t. the original preferences. In some empirical settings, PS is less prone to manipulation. When an agent is [[Risk aversion|risk-averse]] and has no information about the other agents' strategies, his [[maximin strategy]] is to be truthful.&lt;ref name=":0" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Best responses w.r.t. expected utility can cycle. However, a pure [[Nash equilibrium]] exists for any number of agents and items. When there are two agents, there are linear-time algorithms to compute a preference-profile that is in Nash equilibrium w.r.t. the original preferences. In some empirical settings, PS is less prone to manipulation. When an agent is [[Risk aversion|risk-averse]] and has no information about the other agents' strategies, his [[maximin strategy]] is to be truthful.&lt;ref name=":0" /&gt;</div></td> </tr> </table> Headbomb https://en.wikipedia.org/w/index.php?title=Simultaneous_eating_algorithm&diff=1173785517&oldid=prev Citation bot: Alter: title, template type. Add: chapter-url, chapter. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar 2023-09-04T11:21:03Z <p>Alter: title, template type. Add: chapter-url, chapter. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | #UCB_toolbar</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:21, 4 September 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 5:</td> <td colspan="2" class="diff-lineno">Line 5:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>SE was developed by [[Hervé Moulin]] and [[Anna Bogomolnaia]] as a solution for the [[fair random assignment]] problem, where the fraction that each agent receives of each item is interpreted as a probability. If the integral of the eating speed of all agents is 1, then the sum of fractions assigned to each agent is 1, so the matrix of fractions can be decomposed into a lottery over assignments in which each agent gets exactly one item. With equal eating speeds, the lottery is [[envy-free]] in expectation ([[ex-ante]]) for all vectors of utility functions consistent with the agents' item rankings.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>SE was developed by [[Hervé Moulin]] and [[Anna Bogomolnaia]] as a solution for the [[fair random assignment]] problem, where the fraction that each agent receives of each item is interpreted as a probability. If the integral of the eating speed of all agents is 1, then the sum of fractions assigned to each agent is 1, so the matrix of fractions can be decomposed into a lottery over assignments in which each agent gets exactly one item. With equal eating speeds, the lottery is [[envy-free]] in expectation ([[ex-ante]]) for all vectors of utility functions consistent with the agents' item rankings.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A variant of SE was applied also to [[Fair cake-cutting|cake-cutting]], where the allocation is deterministic (not random).&lt;ref&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del> |last1=Aziz |first1=Haris |last2=Ye |first2=Chun |date=2014 |editor-last=Liu |editor-first=Tie-Yan |editor2-last=Qi |editor2-first=Qi |editor3-last=Ye |editor3-first=Yinyu |<del style="font-weight: bold; text-decoration: none;">title=Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations |</del>url=https://link.springer.com/chapter/10.1007/978-3-319-13129-0_1<del style="font-weight: bold; text-decoration: none;"> |journal=Web and Internet Economics</del> |series=Lecture Notes in Computer Science |volume=8877 |language=en |location=Cham |publisher=Springer International Publishing |pages=1–14 |doi=10.1007/978-3-319-13129-0_1 |isbn=978-3-319-13129-0|s2cid=18365892 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A variant of SE was applied also to [[Fair cake-cutting|cake-cutting]], where the allocation is deterministic (not random).&lt;ref&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins> |last1=Aziz |first1=Haris |last2=Ye |first2=Chun<ins style="font-weight: bold; text-decoration: none;"> |title=Web and Internet Economics |chapter=Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations</ins> |date=2014 |editor-last=Liu |editor-first=Tie-Yan |editor2-last=Qi |editor2-first=Qi |editor3-last=Ye |editor3-first=Yinyu |<ins style="font-weight: bold; text-decoration: none;">chapter-</ins>url=https://link.springer.com/chapter/10.1007/978-3-319-13129-0_1 |series=Lecture Notes in Computer Science |volume=8877 |language=en |location=Cham |publisher=Springer International Publishing |pages=1–14 |doi=10.1007/978-3-319-13129-0_1 |isbn=978-3-319-13129-0|s2cid=18365892 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Description ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Description ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 91:</td> <td colspan="2" class="diff-lineno">Line 91:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As explained above, the allocation determined by PS is fair only ex-ante but not ex-post. Moreover, when each agent may get any number of items, the ex-post unfairness might be arbitrarily bad: theoretically it is possible that one agent will get all the items while other agents get none. Recently, several algorithms have been suggested, that guarantee both ex-ante fairness and ex-post approximate-fairness.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>As explained above, the allocation determined by PS is fair only ex-ante but not ex-post. Moreover, when each agent may get any number of items, the ex-post unfairness might be arbitrarily bad: theoretically it is possible that one agent will get all the items while other agents get none. Recently, several algorithms have been suggested, that guarantee both ex-ante fairness and ex-post approximate-fairness.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Freeman, Shah and Vaish&lt;ref&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del>|last1=Freeman|first1=Rupert|last2=Shah|first2=Nisarg|last3=Vaish|first3=Rohit|<del style="font-weight: bold; text-decoration: none;">date</del>=<del style="font-weight: bold; text-decoration: none;">2020-07-13</del>|<del style="font-weight: bold; text-decoration: none;">title</del>=Best of Both Worlds: Ex-Ante and Ex-Post Fairness in Resource Allocation|url=https://doi.org/10.1145/3391403.3399537<del style="font-weight: bold; text-decoration: none;">|journal=Proceedings of the 21st ACM Conference on Economics and Computation</del>|series=EC '20|location=Virtual Event, Hungary|publisher=Association for Computing Machinery|pages=21–22|doi=10.1145/3391403.3399537|isbn=978-1-4503-7975-5|arxiv=2005.14122|s2cid=211141200}}&lt;/ref&gt; show:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Freeman, Shah and Vaish&lt;ref&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins>|last1=Freeman|first1=Rupert|last2=Shah|first2=Nisarg|last3=Vaish|first3=Rohit|<ins style="font-weight: bold; text-decoration: none;">title</ins>=<ins style="font-weight: bold; text-decoration: none;">Proceedings of the 21st ACM Conference on Economics and Computation </ins>|<ins style="font-weight: bold; text-decoration: none;">chapter</ins>=Best of Both Worlds: Ex-Ante and Ex-Post Fairness in Resource Allocation<ins style="font-weight: bold; text-decoration: none;"> </ins>|<ins style="font-weight: bold; text-decoration: none;">date=2020-07-13|chapter-</ins>url=https://doi.org/10.1145/3391403.3399537|series=EC '20|location=Virtual Event, Hungary|publisher=Association for Computing Machinery|pages=21–22|doi=10.1145/3391403.3399537|isbn=978-1-4503-7975-5|arxiv=2005.14122|s2cid=211141200}}&lt;/ref&gt; show:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The '''Recursive Probabilistic Serial''' (RecPS) algorithm, which returns a probability distribution over allocations that are all envy-free-except-one-item (EF1). The distribution is ex-ante EF, and the allocation is ex-post EF1. A naive version of this algorithm yields a distribution over a possibly exponential number of deterministic allocations, a support size polynomial in the number of agents and goods is sufficient, and thus the algorithm runs in polynomial time. The algorithm uses [[separation oracle]]s. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The '''Recursive Probabilistic Serial''' (RecPS) algorithm, which returns a probability distribution over allocations that are all envy-free-except-one-item (EF1). The distribution is ex-ante EF, and the allocation is ex-post EF1. A naive version of this algorithm yields a distribution over a possibly exponential number of deterministic allocations, a support size polynomial in the number of agents and goods is sufficient, and thus the algorithm runs in polynomial time. The algorithm uses [[separation oracle]]s. </div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 98:</td> <td colspan="2" class="diff-lineno">Line 98:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The RecPS can be modified to attain similar guarantees (ex-ante EF and ex-post EF1) for bads.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The RecPS can be modified to attain similar guarantees (ex-ante EF and ex-post EF1) for bads.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Aziz&lt;ref&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">journal</del> |last=Aziz |first=Haris |<del style="font-weight: bold; text-decoration: none;">date</del>=<del style="font-weight: bold; text-decoration: none;">2020-12-07</del> |<del style="font-weight: bold; text-decoration: none;">title</del>=Simultaneously Achieving Ex-ante and Ex-post Fairness |url=https://doi.org/10.1007/978-3-030-64946-3_24<del style="font-weight: bold; text-decoration: none;"> |journal=Web and Internet Economics: 16th International Conference, WINE 2020, Beijing, China, December 7–11, 2020, Proceedings</del> |series=Lecture Notes in Computer Science |volume=12495 |location=Berlin, Heidelberg |publisher=Springer-Verlag |pages=341–355 |doi=10.1007/978-3-030-64946-3_24 |arxiv=2004.02554 |isbn=978-3-030-64945-6|s2cid=214802174 }}&lt;/ref&gt; shows:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Aziz&lt;ref&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">book</ins> |last=Aziz |first=Haris |<ins style="font-weight: bold; text-decoration: none;">title</ins>=<ins style="font-weight: bold; text-decoration: none;">Web and Internet Economics</ins> |<ins style="font-weight: bold; text-decoration: none;">chapter</ins>=Simultaneously Achieving Ex-ante and Ex-post Fairness |<ins style="font-weight: bold; text-decoration: none;">date=2020-12-07 |chapter-</ins>url=https://doi.org/10.1007/978-3-030-64946-3_24 |series=Lecture Notes in Computer Science |volume=12495 |location=Berlin, Heidelberg |publisher=Springer-Verlag |pages=341–355 |doi=10.1007/978-3-030-64946-3_24 |arxiv=2004.02554 |isbn=978-3-030-64945-6|s2cid=214802174 }}&lt;/ref&gt; shows:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The '''PS-lottery algorithm''', in which the allocation is ex-ante sd-EF, and the lottery is done only among deterministic allocations that are sd-EF1, i.e., the EF and EF1 guarantees hold for ''any'' cardinal utilities consistent with the ordinal ranking. Moreover, the outcome is sd-PO both ex-ante and ex-post. The algorithm uses as subroutines both the PS algorithm and the [[Birkhoff algorithm]]. The ex-ante allocation is equivalent to the one returned by PS; this shows that the outcome of PS can be decomposed into EF1 allocations. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The '''PS-lottery algorithm''', in which the allocation is ex-ante sd-EF, and the lottery is done only among deterministic allocations that are sd-EF1, i.e., the EF and EF1 guarantees hold for ''any'' cardinal utilities consistent with the ordinal ranking. Moreover, the outcome is sd-PO both ex-ante and ex-post. The algorithm uses as subroutines both the PS algorithm and the [[Birkhoff algorithm]]. The ex-ante allocation is equivalent to the one returned by PS; this shows that the outcome of PS can be decomposed into EF1 allocations. </div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Simultaneous_eating_algorithm&diff=1136408070&oldid=prev OAbot: Open access bot: doi added to citation with #oabot. 2023-01-30T04:55:07Z <p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi added to citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:55, 30 January 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 74:</td> <td colspan="2" class="diff-lineno">Line 74:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Older technical report: https://arxiv.org/abs/1401.6523.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Older technical report: https://arxiv.org/abs/1401.6523.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Best responses w.r.t. expected utility can cycle. However, a pure [[Nash equilibrium]] exists for any number of agents and items. When there are two agents, there are linear-time algorithms to compute a preference-profile that is in Nash equilibrium w.r.t. the original preferences. In some empirical settings, PS is less prone to manipulation. When an agent is [[Risk aversion|risk-averse]] and has no information about the other agents' strategies, his [[maximin strategy]] is to be truthful.&lt;ref name=":0" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Best responses w.r.t. expected utility can cycle. However, a pure [[Nash equilibrium]] exists for any number of agents and items. When there are two agents, there are linear-time algorithms to compute a preference-profile that is in Nash equilibrium w.r.t. the original preferences. In some empirical settings, PS is less prone to manipulation. When an agent is [[Risk aversion|risk-averse]] and has no information about the other agents' strategies, his [[maximin strategy]] is to be truthful.&lt;ref name=":0" /&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*A manipulating agent can increase his utility by a factor of at most 3/2. This was first observed empirically on random instances,&lt;ref&gt;{{Cite journal |last1=Hosseini |first1=Hadi |last2=Larson |first2=Kate |last3=Cohen |first3=Robin |date=2018-07-01 |title=Investigating the characteristics of one-sided matching mechanisms under various preferences and risk attitudes |url=https://doi.org/10.1007/s10458-018-9387-y |journal=Autonomous Agents and Multi-Agent Systems |language=en |volume=32 |issue=4 |pages=534–567 |doi=10.1007/s10458-018-9387-y |arxiv=1703.00320 |s2cid=14041902 |issn=1573-7454}}&lt;/ref&gt; and then proved formally.&lt;ref&gt;{{Cite journal |last1=Wang |first1=Zihe |last2=Wei |first2=Zhide |last3=Zhang |first3=Jie |date=2020-04-03 |title=Bounded Incentives in Manipulating the Probabilistic Serial Rule |url=https://ojs.aaai.org/index.php/AAAI/article/view/5605 |journal=Proceedings of the AAAI Conference on Artificial Intelligence |language=en |volume=34 |issue=2 |pages=2276–2283 |doi=10.1609/aaai.v34i02.5605 |s2cid=210943079 |issn=2374-3468}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*A manipulating agent can increase his utility by a factor of at most 3/2. This was first observed empirically on random instances,&lt;ref&gt;{{Cite journal |last1=Hosseini |first1=Hadi |last2=Larson |first2=Kate |last3=Cohen |first3=Robin |date=2018-07-01 |title=Investigating the characteristics of one-sided matching mechanisms under various preferences and risk attitudes |url=https://doi.org/10.1007/s10458-018-9387-y |journal=Autonomous Agents and Multi-Agent Systems |language=en |volume=32 |issue=4 |pages=534–567 |doi=10.1007/s10458-018-9387-y |arxiv=1703.00320 |s2cid=14041902 |issn=1573-7454}}&lt;/ref&gt; and then proved formally.&lt;ref&gt;{{Cite journal |last1=Wang |first1=Zihe |last2=Wei |first2=Zhide |last3=Zhang |first3=Jie |date=2020-04-03 |title=Bounded Incentives in Manipulating the Probabilistic Serial Rule |url=https://ojs.aaai.org/index.php/AAAI/article/view/5605 |journal=Proceedings of the AAAI Conference on Artificial Intelligence |language=en |volume=34 |issue=2 |pages=2276–2283 |doi=10.1609/aaai.v34i02.5605 |s2cid=210943079 |issn=2374-3468<ins style="font-weight: bold; text-decoration: none;">|doi-access=free </ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Note that the [[random priority item allocation|random priority]] rule, which solves the same problem as PS, is truthful.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Note that the [[random priority item allocation|random priority]] rule, which solves the same problem as PS, is truthful.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 85:</td> <td colspan="2" class="diff-lineno">Line 85:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Budish, Che, Kojima and Milgrom&lt;ref name=":1"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282}}&lt;/ref&gt; present ''Generalized PS'', which allows multiple units per item, more items than agents, each agent can get several units, upper quotas, and bi-hierarchical constraints on the feasible allocations.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Budish, Che, Kojima and Milgrom&lt;ref name=":1"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282}}&lt;/ref&gt; present ''Generalized PS'', which allows multiple units per item, more items than agents, each agent can get several units, upper quotas, and bi-hierarchical constraints on the feasible allocations.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Ashlagi, Saberi and Shameli&lt;ref&gt;{{Cite journal |last1=Ashlagi |first1=Itai |last2=Saberi |first2=Amin |last3=Shameli |first3=Ali |date=2020-03-01 |title=Assignment Mechanisms Under Distributional Constraints |url=https://pubsonline.informs.org/doi/abs/10.1287/opre.2019.1887 |journal=Operations Research |volume=68 |issue=2 |pages=467–479 |doi=10.1287/opre.2019.1887 |arxiv=1810.04331 |issn=0030-364X}}&lt;/ref&gt; present another ''Generalized PS'', which allows lower and upper quotas, and distributional constraints (constraints on the probability distribution and not only the final allocation).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Ashlagi, Saberi and Shameli&lt;ref&gt;{{Cite journal |last1=Ashlagi |first1=Itai |last2=Saberi |first2=Amin |last3=Shameli |first3=Ali |date=2020-03-01 |title=Assignment Mechanisms Under Distributional Constraints |url=https://pubsonline.informs.org/doi/abs/10.1287/opre.2019.1887 |journal=Operations Research |volume=68 |issue=2 |pages=467–479 |doi=10.1287/opre.2019.1887 |arxiv=1810.04331 |issn=0030-364X}}&lt;/ref&gt; present another ''Generalized PS'', which allows lower and upper quotas, and distributional constraints (constraints on the probability distribution and not only the final allocation).</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Aziz and Stursberg&lt;ref&gt;{{Cite journal |last1=Aziz |first1=Haris |last2=Stursberg |first2=Paul |date=2014-06-20 |title=A Generalization of Probabilistic Serial to Randomized Social Choice |url=https://ojs.aaai.org/index.php/AAAI/article/view/8796 |journal=Proceedings of the AAAI Conference on Artificial Intelligence |language=en |volume=28 |issue=1 |doi=10.1609/aaai.v28i1.8796 |s2cid=16265016 |issn=2374-3468}}&lt;/ref&gt; present ''Egalitarian Simultaneous Reservation (ESR)'', which allows not only fair item allocation but also general [[Social choice theory|social choice]] problems, with possible indifferences.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Aziz and Stursberg&lt;ref&gt;{{Cite journal |last1=Aziz |first1=Haris |last2=Stursberg |first2=Paul |date=2014-06-20 |title=A Generalization of Probabilistic Serial to Randomized Social Choice |url=https://ojs.aaai.org/index.php/AAAI/article/view/8796 |journal=Proceedings of the AAAI Conference on Artificial Intelligence |language=en |volume=28 |issue=1 |doi=10.1609/aaai.v28i1.8796 |s2cid=16265016 |issn=2374-3468<ins style="font-weight: bold; text-decoration: none;">|doi-access=free </ins>}}&lt;/ref&gt; present ''Egalitarian Simultaneous Reservation (ESR)'', which allows not only fair item allocation but also general [[Social choice theory|social choice]] problems, with possible indifferences.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Aziz and Brandl&lt;ref&gt;{{Cite journal |last1=Aziz |first1=Haris |last2=Brandl |first2=Florian |date=2022-09-01 |title=The vigilant eating rule: A general approach for probabilistic economic design with constraints |url=https://www.sciencedirect.com/science/article/pii/S0899825622001014 |journal=Games and Economic Behavior |language=en |volume=135 |pages=168–187 |doi=10.1016/j.geb.2022.06.002 |arxiv=2008.08991 |s2cid=221186811 |issn=0899-8256}}&lt;/ref&gt; present ''Vigilant Eating (VE)'', which allows even more general constraints.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Aziz and Brandl&lt;ref&gt;{{Cite journal |last1=Aziz |first1=Haris |last2=Brandl |first2=Florian |date=2022-09-01 |title=The vigilant eating rule: A general approach for probabilistic economic design with constraints |url=https://www.sciencedirect.com/science/article/pii/S0899825622001014 |journal=Games and Economic Behavior |language=en |volume=135 |pages=168–187 |doi=10.1016/j.geb.2022.06.002 |arxiv=2008.08991 |s2cid=221186811 |issn=0899-8256}}&lt;/ref&gt; present ''Vigilant Eating (VE)'', which allows even more general constraints.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> OAbot https://en.wikipedia.org/w/index.php?title=Simultaneous_eating_algorithm&diff=1112397463&oldid=prev Citation bot: Alter: issue, template type. Add: eprint, class, arxiv, s2cid, volume, series, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 16/24 2022-09-26T04:28:34Z <p>Alter: issue, template type. Add: eprint, class, arxiv, s2cid, volume, series, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 16/24</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:28, 26 September 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 5:</td> <td colspan="2" class="diff-lineno">Line 5:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>SE was developed by [[Hervé Moulin]] and [[Anna Bogomolnaia]] as a solution for the [[fair random assignment]] problem, where the fraction that each agent receives of each item is interpreted as a probability. If the integral of the eating speed of all agents is 1, then the sum of fractions assigned to each agent is 1, so the matrix of fractions can be decomposed into a lottery over assignments in which each agent gets exactly one item. With equal eating speeds, the lottery is [[envy-free]] in expectation ([[ex-ante]]) for all vectors of utility functions consistent with the agents' item rankings.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>SE was developed by [[Hervé Moulin]] and [[Anna Bogomolnaia]] as a solution for the [[fair random assignment]] problem, where the fraction that each agent receives of each item is interpreted as a probability. If the integral of the eating speed of all agents is 1, then the sum of fractions assigned to each agent is 1, so the matrix of fractions can be decomposed into a lottery over assignments in which each agent gets exactly one item. With equal eating speeds, the lottery is [[envy-free]] in expectation ([[ex-ante]]) for all vectors of utility functions consistent with the agents' item rankings.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A variant of SE was applied also to [[Fair cake-cutting|cake-cutting]], where the allocation is deterministic (not random).&lt;ref&gt;{{Cite journal |<del style="font-weight: bold; text-decoration: none;">last</del>=Aziz |<del style="font-weight: bold; text-decoration: none;">first</del>=Haris |last2=Ye |first2=Chun |date=2014 |editor-last=Liu |editor-first=Tie-Yan |editor2-last=Qi |editor2-first=Qi |editor3-last=Ye |editor3-first=Yinyu |title=Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations |url=https://link.springer.com/chapter/10.1007/978-3-319-13129-0_1 |journal=Web and Internet Economics |language=en |location=Cham |publisher=Springer International Publishing |pages=1–14 |doi=10.1007/978-3-319-13129-0_1 |isbn=978-3-319-13129-0}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A variant of SE was applied also to [[Fair cake-cutting|cake-cutting]], where the allocation is deterministic (not random).&lt;ref&gt;{{Cite journal |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Aziz |<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Haris |last2=Ye |first2=Chun |date=2014 |editor-last=Liu |editor-first=Tie-Yan |editor2-last=Qi |editor2-first=Qi |editor3-last=Ye |editor3-first=Yinyu |title=Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations |url=https://link.springer.com/chapter/10.1007/978-3-319-13129-0_1 |journal=Web and Internet Economics<ins style="font-weight: bold; text-decoration: none;"> |series=Lecture Notes in Computer Science |volume=8877</ins> |language=en |location=Cham |publisher=Springer International Publishing |pages=1–14 |doi=10.1007/978-3-319-13129-0_1 |isbn=978-3-319-13129-0<ins style="font-weight: bold; text-decoration: none;">|s2cid=18365892 </ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Description ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Description ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 74:</td> <td colspan="2" class="diff-lineno">Line 74:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Older technical report: https://arxiv.org/abs/1401.6523.&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Older technical report: https://arxiv.org/abs/1401.6523.&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Best responses w.r.t. expected utility can cycle. However, a pure [[Nash equilibrium]] exists for any number of agents and items. When there are two agents, there are linear-time algorithms to compute a preference-profile that is in Nash equilibrium w.r.t. the original preferences. In some empirical settings, PS is less prone to manipulation. When an agent is [[Risk aversion|risk-averse]] and has no information about the other agents' strategies, his [[maximin strategy]] is to be truthful.&lt;ref name=":0" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Best responses w.r.t. expected utility can cycle. However, a pure [[Nash equilibrium]] exists for any number of agents and items. When there are two agents, there are linear-time algorithms to compute a preference-profile that is in Nash equilibrium w.r.t. the original preferences. In some empirical settings, PS is less prone to manipulation. When an agent is [[Risk aversion|risk-averse]] and has no information about the other agents' strategies, his [[maximin strategy]] is to be truthful.&lt;ref name=":0" /&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*A manipulating agent can increase his utility by a factor of at most 3/2. This was first observed empirically on random instances,&lt;ref&gt;{{Cite journal |<del style="font-weight: bold; text-decoration: none;">last</del>=Hosseini |<del style="font-weight: bold; text-decoration: none;">first</del>=Hadi |last2=Larson |first2=Kate |last3=Cohen |first3=Robin |date=2018-07-01 |title=Investigating the characteristics of one-sided matching mechanisms under various preferences and risk attitudes |url=https://doi.org/10.1007/s10458-018-9387-y |journal=Autonomous Agents and Multi-Agent Systems |language=en |volume=32 |issue=4 |pages=534–567 |doi=10.1007/s10458-018-9387-y |issn=1573-7454}}&lt;/ref&gt; and then proved formally.&lt;ref&gt;{{Cite journal |<del style="font-weight: bold; text-decoration: none;">last</del>=Wang |<del style="font-weight: bold; text-decoration: none;">first</del>=Zihe |last2=Wei |first2=Zhide |last3=Zhang |first3=Jie |date=2020-04-03 |title=Bounded Incentives in Manipulating the Probabilistic Serial Rule |url=https://ojs.aaai.org/index.php/AAAI/article/view/5605 |journal=Proceedings of the AAAI Conference on Artificial Intelligence |language=en |volume=34 |issue=<del style="font-weight: bold; text-decoration: none;">02</del> |pages=2276–2283 |doi=10.1609/aaai.v34i02.5605 |issn=2374-3468}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*A manipulating agent can increase his utility by a factor of at most 3/2. This was first observed empirically on random instances,&lt;ref&gt;{{Cite journal |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Hosseini |<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Hadi |last2=Larson |first2=Kate |last3=Cohen |first3=Robin |date=2018-07-01 |title=Investigating the characteristics of one-sided matching mechanisms under various preferences and risk attitudes |url=https://doi.org/10.1007/s10458-018-9387-y |journal=Autonomous Agents and Multi-Agent Systems |language=en |volume=32 |issue=4 |pages=534–567 |doi=10.1007/s10458-018-9387-y<ins style="font-weight: bold; text-decoration: none;"> |arxiv=1703.00320 |s2cid=14041902</ins> |issn=1573-7454}}&lt;/ref&gt; and then proved formally.&lt;ref&gt;{{Cite journal |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Wang |<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Zihe |last2=Wei |first2=Zhide |last3=Zhang |first3=Jie |date=2020-04-03 |title=Bounded Incentives in Manipulating the Probabilistic Serial Rule |url=https://ojs.aaai.org/index.php/AAAI/article/view/5605 |journal=Proceedings of the AAAI Conference on Artificial Intelligence |language=en |volume=34 |issue=<ins style="font-weight: bold; text-decoration: none;">2</ins> |pages=2276–2283 |doi=10.1609/aaai.v34i02.5605<ins style="font-weight: bold; text-decoration: none;"> |s2cid=210943079</ins> |issn=2374-3468}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Note that the [[random priority item allocation|random priority]] rule, which solves the same problem as PS, is truthful.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Note that the [[random priority item allocation|random priority]] rule, which solves the same problem as PS, is truthful.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 82:</td> <td colspan="2" class="diff-lineno">Line 82:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Bogomolnaia&lt;ref name=":2" /&gt; presented a simpler definition of the PS rule for weak preferences, based on the [[leximin order]]. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Bogomolnaia&lt;ref name=":2" /&gt; presented a simpler definition of the PS rule for weak preferences, based on the [[leximin order]]. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Yilmaz&lt;ref name="y09"&gt;{{cite journal |last1=Yılmaz |first1=Özgür |year=2009 |title=Random assignment under weak preferences |url=http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/6207 |journal=Games and Economic Behavior |volume=66 |pages=546–558 |doi=10.1016/j.geb.2008.04.017}}&lt;/ref&gt; allows both indifferences and endowments.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Yilmaz&lt;ref name="y09"&gt;{{cite journal |last1=Yılmaz |first1=Özgür |year=2009 |title=Random assignment under weak preferences |url=http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/6207 |journal=Games and Economic Behavior |volume=66 |pages=546–558 |doi=10.1016/j.geb.2008.04.017}}&lt;/ref&gt; allows both indifferences and endowments.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Athanassoglout and Sethuraman&lt;ref&gt;{{Cite journal |<del style="font-weight: bold; text-decoration: none;">last</del>=Athanassoglou |<del style="font-weight: bold; text-decoration: none;">first</del>=Stergios |last2=Sethuraman |first2=Jay |date=2011-08-01 |title=House allocation with fractional endowments |url=https://doi.org/10.1007/s00182-010-0251-9 |journal=International Journal of Game Theory |language=en |volume=40 |issue=3 |pages=481–513 |doi=10.1007/s00182-010-0251-9 |issn=1432-1270}}&lt;/ref&gt; present the ''controlled consuming (CC)'' rule, which allows indifferences and fractional endowments of any quantity.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Athanassoglout and Sethuraman&lt;ref&gt;{{Cite journal |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Athanassoglou |<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Stergios |last2=Sethuraman |first2=Jay |date=2011-08-01 |title=House allocation with fractional endowments |url=https://doi.org/10.1007/s00182-010-0251-9 |journal=International Journal of Game Theory |language=en |volume=40 |issue=3 |pages=481–513 |doi=10.1007/s00182-010-0251-9<ins style="font-weight: bold; text-decoration: none;"> |s2cid=15909570</ins> |issn=1432-1270}}&lt;/ref&gt; present the ''controlled consuming (CC)'' rule, which allows indifferences and fractional endowments of any quantity.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Budish, Che, Kojima and Milgrom&lt;ref name=":1"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282}}&lt;/ref&gt; present ''Generalized PS'', which allows multiple units per item, more items than agents, each agent can get several units, upper quotas, and bi-hierarchical constraints on the feasible allocations.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Budish, Che, Kojima and Milgrom&lt;ref name=":1"&gt;{{Cite journal|last1=Budish|first1=Eric|last2=Che|first2=Yeon-Koo|last3=Kojima|first3=Fuhito|last4=Milgrom|first4=Paul|date=2013-04-01|title=Designing Random Allocation Mechanisms: Theory and Applications|url=https://www.aeaweb.org/articles?id=10.1257/aer.103.2.585|journal=American Economic Review|language=en|volume=103|issue=2|pages=585–623|doi=10.1257/aer.103.2.585|issn=0002-8282}}&lt;/ref&gt; present ''Generalized PS'', which allows multiple units per item, more items than agents, each agent can get several units, upper quotas, and bi-hierarchical constraints on the feasible allocations.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Ashlagi, Saberi and Shameli&lt;ref&gt;{{Cite journal |<del style="font-weight: bold; text-decoration: none;">last</del>=Ashlagi |<del style="font-weight: bold; text-decoration: none;">first</del>=Itai |last2=Saberi |first2=Amin |last3=Shameli |first3=Ali |date=2020-03-01 |title=Assignment Mechanisms Under Distributional Constraints |url=https://pubsonline.informs.org/doi/abs/10.1287/opre.2019.1887 |journal=Operations Research |volume=68 |issue=2 |pages=467–479 |doi=10.1287/opre.2019.1887 |issn=0030-364X}}&lt;/ref&gt; present another ''Generalized PS'', which allows lower and upper quotas, and distributional constraints (constraints on the probability distribution and not only the final allocation).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Ashlagi, Saberi and Shameli&lt;ref&gt;{{Cite journal |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Ashlagi |<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Itai |last2=Saberi |first2=Amin |last3=Shameli |first3=Ali |date=2020-03-01 |title=Assignment Mechanisms Under Distributional Constraints |url=https://pubsonline.informs.org/doi/abs/10.1287/opre.2019.1887 |journal=Operations Research |volume=68 |issue=2 |pages=467–479 |doi=10.1287/opre.2019.1887<ins style="font-weight: bold; text-decoration: none;"> |arxiv=1810.04331</ins> |issn=0030-364X}}&lt;/ref&gt; present another ''Generalized PS'', which allows lower and upper quotas, and distributional constraints (constraints on the probability distribution and not only the final allocation).</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Aziz and Stursberg&lt;ref&gt;{{Cite journal |<del style="font-weight: bold; text-decoration: none;">last</del>=Aziz |<del style="font-weight: bold; text-decoration: none;">first</del>=Haris |last2=Stursberg |first2=Paul |date=2014-06-20 |title=A Generalization of Probabilistic Serial to Randomized Social Choice |url=https://ojs.aaai.org/index.php/AAAI/article/view/8796 |journal=Proceedings of the AAAI Conference on Artificial Intelligence |language=en |volume=28 |issue=1 |doi=10.1609/aaai.v28i1.8796 |issn=2374-3468}}&lt;/ref&gt; present ''Egalitarian Simultaneous Reservation (ESR)'', which allows not only fair item allocation but also general [[Social choice theory|social choice]] problems, with possible indifferences.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Aziz and Stursberg&lt;ref&gt;{{Cite journal |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Aziz |<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Haris |last2=Stursberg |first2=Paul |date=2014-06-20 |title=A Generalization of Probabilistic Serial to Randomized Social Choice |url=https://ojs.aaai.org/index.php/AAAI/article/view/8796 |journal=Proceedings of the AAAI Conference on Artificial Intelligence |language=en |volume=28 |issue=1 |doi=10.1609/aaai.v28i1.8796<ins style="font-weight: bold; text-decoration: none;"> |s2cid=16265016</ins> |issn=2374-3468}}&lt;/ref&gt; present ''Egalitarian Simultaneous Reservation (ESR)'', which allows not only fair item allocation but also general [[Social choice theory|social choice]] problems, with possible indifferences.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Aziz and Brandl&lt;ref&gt;{{Cite journal |<del style="font-weight: bold; text-decoration: none;">last</del>=Aziz |<del style="font-weight: bold; text-decoration: none;">first</del>=Haris |last2=Brandl |first2=Florian |date=2022-09-01 |title=The vigilant eating rule: A general approach for probabilistic economic design with constraints |url=https://www.sciencedirect.com/science/article/pii/S0899825622001014 |journal=Games and Economic Behavior |language=en |volume=135 |pages=168–187 |doi=10.1016/j.geb.2022.06.002 |issn=0899-8256}}&lt;/ref&gt; present ''Vigilant Eating (VE)'', which allows even more general constraints.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Aziz and Brandl&lt;ref&gt;{{Cite journal |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Aziz |<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Haris |last2=Brandl |first2=Florian |date=2022-09-01 |title=The vigilant eating rule: A general approach for probabilistic economic design with constraints |url=https://www.sciencedirect.com/science/article/pii/S0899825622001014 |journal=Games and Economic Behavior |language=en |volume=135 |pages=168–187 |doi=10.1016/j.geb.2022.06.002<ins style="font-weight: bold; text-decoration: none;"> |arxiv=2008.08991 |s2cid=221186811</ins> |issn=0899-8256}}&lt;/ref&gt; present ''Vigilant Eating (VE)'', which allows even more general constraints.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Guaranteeing ex-post approximate fairness ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Guaranteeing ex-post approximate fairness ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 98:</td> <td colspan="2" class="diff-lineno">Line 98:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The RecPS can be modified to attain similar guarantees (ex-ante EF and ex-post EF1) for bads.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The RecPS can be modified to attain similar guarantees (ex-ante EF and ex-post EF1) for bads.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Aziz&lt;ref&gt;{{Cite journal |last=Aziz |first=Haris |date=2020-12-07 |title=Simultaneously Achieving Ex-ante and Ex-post Fairness |url=https://doi.org/10.1007/978-3-030-64946-3_24 |journal=Web and Internet Economics: 16th International Conference, WINE 2020, Beijing, China, December 7–11, 2020, Proceedings |location=Berlin, Heidelberg |publisher=Springer-Verlag |pages=341–355 |doi=10.1007/978-3-030-64946-3_24 |isbn=978-3-030-64945-6}}&lt;/ref&gt; shows:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Aziz&lt;ref&gt;{{Cite journal |last=Aziz |first=Haris |date=2020-12-07 |title=Simultaneously Achieving Ex-ante and Ex-post Fairness |url=https://doi.org/10.1007/978-3-030-64946-3_24 |journal=Web and Internet Economics: 16th International Conference, WINE 2020, Beijing, China, December 7–11, 2020, Proceedings<ins style="font-weight: bold; text-decoration: none;"> |series=Lecture Notes in Computer Science |volume=12495</ins> |location=Berlin, Heidelberg |publisher=Springer-Verlag |pages=341–355 |doi=10.1007/978-3-030-64946-3_24<ins style="font-weight: bold; text-decoration: none;"> |arxiv=2004.02554</ins> |isbn=978-3-030-64945-6<ins style="font-weight: bold; text-decoration: none;">|s2cid=214802174 </ins>}}&lt;/ref&gt; shows:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The '''PS-lottery algorithm''', in which the allocation is ex-ante sd-EF, and the lottery is done only among deterministic allocations that are sd-EF1, i.e., the EF and EF1 guarantees hold for ''any'' cardinal utilities consistent with the ordinal ranking. Moreover, the outcome is sd-PO both ex-ante and ex-post. The algorithm uses as subroutines both the PS algorithm and the [[Birkhoff algorithm]]. The ex-ante allocation is equivalent to the one returned by PS; this shows that the outcome of PS can be decomposed into EF1 allocations. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The '''PS-lottery algorithm''', in which the allocation is ex-ante sd-EF, and the lottery is done only among deterministic allocations that are sd-EF1, i.e., the EF and EF1 guarantees hold for ''any'' cardinal utilities consistent with the ordinal ranking. Moreover, the outcome is sd-PO both ex-ante and ex-post. The algorithm uses as subroutines both the PS algorithm and the [[Birkhoff algorithm]]. The ex-ante allocation is equivalent to the one returned by PS; this shows that the outcome of PS can be decomposed into EF1 allocations. </div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 109:</td> <td colspan="2" class="diff-lineno">Line 109:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A polynomial-time algorithm for computing allocations that are ex-ante proportional, and ex-post both PROP1 and 1/2-fraction [[Maximin share|maximin-share]] (and also 1/2-fraction ''truncated-proportional share'').</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A polynomial-time algorithm for computing allocations that are ex-ante proportional, and ex-post both PROP1 and 1/2-fraction [[Maximin share|maximin-share]] (and also 1/2-fraction ''truncated-proportional share'').</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* These properties are nearly optimal - it is impossible to guarantee more than PROP ex-ante, and more than ''n''/(2''n''-1) truncated-proportional share ex-post.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* These properties are nearly optimal - it is impossible to guarantee more than PROP ex-ante, and more than ''n''/(2''n''-1) truncated-proportional share ex-post.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Hoefer, Schmalhofer and Varricchio&lt;ref&gt;{{cite <del style="font-weight: bold; text-decoration: none;">arxiv</del> |<del style="font-weight: bold; text-decoration: none;">last</del>=Hoefer |<del style="font-weight: bold; text-decoration: none;">first</del>=Martin |last2=Schmalhofer |first2=Marco |last3=Varricchio |first3=Giovanna |date=2022-09-08 |title=Best of Both Worlds: Agents with Entitlements |<del style="font-weight: bold; text-decoration: none;">arxiv</del>=2209.03908 }}&lt;/ref&gt; extend the notion of "Best-of-Both-Worlds" lottery to agents with different [[Entitlement (fair division)|entitlements]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Hoefer, Schmalhofer and Varricchio&lt;ref&gt;{{cite <ins style="font-weight: bold; text-decoration: none;">arXiv</ins> |<ins style="font-weight: bold; text-decoration: none;">last1</ins>=Hoefer |<ins style="font-weight: bold; text-decoration: none;">first1</ins>=Martin |last2=Schmalhofer |first2=Marco |last3=Varricchio |first3=Giovanna |date=2022-09-08 |title=Best of Both Worlds: Agents with Entitlements |<ins style="font-weight: bold; text-decoration: none;">class=cs.GT |eprint</ins>=2209.03908 }}&lt;/ref&gt; extend the notion of "Best-of-Both-Worlds" lottery to agents with different [[Entitlement (fair division)|entitlements]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Simultaneous_eating_algorithm&diff=1112394818&oldid=prev Headbomb: Various citation & identifier cleanup, plus AWB genfixes (arxiv version pointless when published) 2022-09-26T04:03:54Z <p>Various citation &amp; identifier cleanup, plus AWB genfixes (arxiv version pointless when published)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:03, 26 September 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''simultaneous eating algorithm''' '''(SE)&lt;ref name="bm01"&gt;{{cite journal |last1=Bogomolnaia |first1=Anna |author1-link=Anna Bogomolnaia |last2=Moulin |first2=Hervé |author2-link=Hervé Moulin |year=2001 |title=A New Solution to the Random Assignment Problem |journal=Journal of Economic Theory |volume=100 |issue=2 |pages=295 |doi=10.1006/jeth.2000.2710}}&lt;/ref&gt;''' is an algorithm for allocating divisible objects among agents with [[ordinal preferences]]. "Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies '''[[SD-efficiency]]''' - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for ''at least one'' vector of [[Additive utility|additive utility functions]] consistent with the agents' item rankings).<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''simultaneous eating algorithm''' '''(SE)&lt;ref name="bm01"&gt;{{cite journal |last1=Bogomolnaia |first1=Anna |author1-link=Anna Bogomolnaia |last2=Moulin |first2=Hervé |author2-link=Hervé Moulin |year=2001 |title=A New Solution to the Random Assignment Problem |journal=Journal of Economic Theory |volume=100 |issue=2 |pages=295 |doi=10.1006/jeth.2000.2710}}&lt;/ref&gt;''' is an algorithm for allocating divisible objects among agents with [[ordinal preferences]]. "Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies '''[[SD-efficiency]]''' - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for ''at least one'' vector of [[Additive utility|additive utility functions]] consistent with the agents' item rankings).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>SE is parametrized by the "eating speed" of each agent. If all agents are given the same eating speed, then the SE allocation satisfies '''SD-envy-freeness''' - a strong ordinal variant of [[envy-freeness]] (it means that the allocation is envy-free for ''all'' vectors of additive utility functions consistent with the agents' item rankings). This particular variant of SE is called the '''Probabilistic Serial rule''' (PS).&lt;ref name="bm01" /&gt;<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>SE is parametrized by the "eating speed" of each agent. If all agents are given the same eating speed, then the SE allocation satisfies '''SD-envy-freeness''' - a strong ordinal variant of [[envy-freeness]] (it means that the allocation is envy-free for ''all'' vectors of additive utility functions consistent with the agents' item rankings). This particular variant of SE is called the '''Probabilistic Serial rule''' (PS).&lt;ref name="bm01" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>SE was developed by [[Hervé Moulin]] and [[Anna Bogomolnaia]] as a solution for the [[fair random assignment]] problem, where the fraction that each agent receives of each item is interpreted as a probability. If the integral of the eating speed of all agents is 1, then the sum of fractions assigned to each agent is 1, so the matrix of fractions can be decomposed into a lottery over assignments in which each agent gets exactly one item. With equal eating speeds, the lottery is [[envy-free]] in expectation ([[ex-ante]]) for all vectors of utility functions consistent with the agents' item rankings.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>SE was developed by [[Hervé Moulin]] and [[Anna Bogomolnaia]] as a solution for the [[fair random assignment]] problem, where the fraction that each agent receives of each item is interpreted as a probability. If the integral of the eating speed of all agents is 1, then the sum of fractions assigned to each agent is 1, so the matrix of fractions can be decomposed into a lottery over assignments in which each agent gets exactly one item. With equal eating speeds, the lottery is [[envy-free]] in expectation ([[ex-ante]]) for all vectors of utility functions consistent with the agents' item rankings.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A variant of SE was applied also to [[Fair cake-cutting|cake-cutting]], where the allocation is deterministic (not random).&lt;ref&gt;{{Cite journal |last=Aziz |first=Haris |last2=Ye |first2=Chun |date=2014 |editor-last=Liu |editor-first=Tie-Yan |editor2-last=Qi |editor2-first=Qi |editor3-last=Ye |editor3-first=Yinyu |title=Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations |url=https://link.springer.com/chapter/10.1007/978-3-319-13129-0_1 |journal=Web and Internet Economics |language=en |location=Cham |publisher=Springer International Publishing |pages=1–14 |doi=10.1007/978-3-319-13129-0_1 |isbn=978-3-319-13129-0}}&lt;/ref&gt;<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A variant of SE was applied also to [[Fair cake-cutting|cake-cutting]], where the allocation is deterministic (not random).&lt;ref&gt;{{Cite journal |last=Aziz |first=Haris |last2=Ye |first2=Chun |date=2014 |editor-last=Liu |editor-first=Tie-Yan |editor2-last=Qi |editor2-first=Qi |editor3-last=Ye |editor3-first=Yinyu |title=Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations |url=https://link.springer.com/chapter/10.1007/978-3-319-13129-0_1 |journal=Web and Internet Economics |language=en |location=Cham |publisher=Springer International Publishing |pages=1–14 |doi=10.1007/978-3-319-13129-0_1 |isbn=978-3-319-13129-0}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Description ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Description ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 50:</td> <td colspan="2" class="diff-lineno">Line 50:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Efficiency ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Efficiency ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>SE with any vector of eating speeds satisfies an efficiency property called '''[[SD-efficiency]]''' (also called ordinal efficiency). Informally it means that, considering the resulting probability matrix, there is no other matrix that all agents weakly-sd-prefer and at least one agent strictly-sd-prefers.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>SE with any vector of eating speeds satisfies an efficiency property called '''[[SD-efficiency]]''' (also called ordinal efficiency). Informally it means that, considering the resulting probability matrix, there is no other matrix that all agents weakly-sd-prefer and at least one agent strictly-sd-prefers.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the context of random assignments, SD-efficiency implies ex-post efficiency: every deterministic assignment selected by the lottery is [[Pareto-efficient]].</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In the context of random assignments, SD-efficiency implies ex-post efficiency: every deterministic assignment selected by the lottery is [[Pareto-efficient]].</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 109:</td> <td colspan="2" class="diff-lineno">Line 109:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A polynomial-time algorithm for computing allocations that are ex-ante proportional, and ex-post both PROP1 and 1/2-fraction [[Maximin share|maximin-share]] (and also 1/2-fraction ''truncated-proportional share'').</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A polynomial-time algorithm for computing allocations that are ex-ante proportional, and ex-post both PROP1 and 1/2-fraction [[Maximin share|maximin-share]] (and also 1/2-fraction ''truncated-proportional share'').</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* These properties are nearly optimal - it is impossible to guarantee more than PROP ex-ante, and more than ''n''/(2''n''-1) truncated-proportional share ex-post.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* These properties are nearly optimal - it is impossible to guarantee more than PROP ex-ante, and more than ''n''/(2''n''-1) truncated-proportional share ex-post.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Hoefer, Schmalhofer and Varricchio&lt;ref&gt;{{<del style="font-weight: bold; text-decoration: none;">Cite</del> <del style="font-weight: bold; text-decoration: none;">journal</del> |last=Hoefer |first=Martin |last2=Schmalhofer |first2=Marco |last3=Varricchio |first3=Giovanna |date=2022-09-08 |title=Best of Both Worlds: Agents with Entitlements |<del style="font-weight: bold; text-decoration: none;">url=http://</del>arxiv<del style="font-weight: bold; text-decoration: none;">.org/abs/2209.03908 |journal</del>=<del style="font-weight: bold; text-decoration: none;">arXiv:</del>2209.03908 <del style="font-weight: bold; text-decoration: none;">[cs]</del>}}&lt;/ref&gt; extend the notion of "Best-of-Both-Worlds" lottery to agents with different [[Entitlement (fair division)|entitlements]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Hoefer, Schmalhofer and Varricchio&lt;ref&gt;{{<ins style="font-weight: bold; text-decoration: none;">cite</ins> <ins style="font-weight: bold; text-decoration: none;">arxiv</ins> |last=Hoefer |first=Martin |last2=Schmalhofer |first2=Marco |last3=Varricchio |first3=Giovanna |date=2022-09-08 |title=Best of Both Worlds: Agents with Entitlements |arxiv=2209.03908 }}&lt;/ref&gt; extend the notion of "Best-of-Both-Worlds" lottery to agents with different [[Entitlement (fair division)|entitlements]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== See also ==</div></td> </tr> </table> Headbomb