https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Split-radix_FFT_algorithm Split-radix FFT algorithm - Revision history 2025-06-26T20:39:38Z Revision history for this page on the wiki MediaWiki 1.45.0-wmf.7 https://en.wikipedia.org/w/index.php?title=Split-radix_FFT_algorithm&diff=1169908336&oldid=prev JohnnyBflat: Adding short description: "Fast Fourier transform algorithm" 2023-08-12T02:05:58Z <p>Adding <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: &quot;Fast Fourier transform algorithm&quot;</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:05, 12 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Fast Fourier transform algorithm}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968)[https://dl.acm.org/profile/81387609872] and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley–Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968)[https://dl.acm.org/profile/81387609872] and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley–Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> JohnnyBflat https://en.wikipedia.org/w/index.php?title=Split-radix_FFT_algorithm&diff=1143763933&oldid=prev Andormaybe: add a link to acm.org profile for author R. Yavne and link to cited publication. 2023-03-09T19:00:43Z <p>add a link to acm.org profile for author R. Yavne and link to cited publication.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:00, 9 March 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley–Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968)<ins style="font-weight: bold; text-decoration: none;">[https://dl.acm.org/profile/81387609872]</ins> and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley–Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [https://web.archive.org/web/20061130110013/http://home.comcast.net/~kmbtib/]), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [https://web.archive.org/web/20061130110013/http://home.comcast.net/~kmbtib/]), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 45:</td> <td colspan="2" class="diff-lineno">Line 45:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* R. Yavne, "An economical method for calculating the discrete Fourier transform," in ''Proc. AFIPS Fall Joint Computer Conf.'' '''33''', 115–125 (1968).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* R. Yavne, "<ins style="font-weight: bold; text-decoration: none;">[https://dl.acm.org/doi/10.1145/1476589.1476610 </ins>An economical method for calculating the discrete Fourier transform<ins style="font-weight: bold; text-decoration: none;">]</ins>," in ''Proc. AFIPS Fall Joint Computer Conf.'' '''33''', 115–125 (1968).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* P. Duhamel and H. Hollmann, "Split-radix FFT algorithm," ''Electron. Lett.'' '''20''' (1), 14–16 (1984).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* P. Duhamel and H. Hollmann, "Split-radix FFT algorithm," ''Electron. Lett.'' '''20''' (1), 14–16 (1984).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* M. Vetterli and H. J. Nussbaumer, "Simple FFT and DCT algorithms with reduced number of operations," ''Signal Processing'' '''6''' (4), 267–278 (1984).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* M. Vetterli and H. J. Nussbaumer, "Simple FFT and DCT algorithms with reduced number of operations," ''Signal Processing'' '''6''' (4), 267–278 (1984).</div></td> </tr> </table> Andormaybe https://en.wikipedia.org/w/index.php?title=Split-radix_FFT_algorithm&diff=1109093228&oldid=prev 134.134.137.85: The periodicity that is relevant is in N/4 (i.e., the denominator in W), not k. 2022-09-07T22:42:53Z <p>The periodicity that is relevant is in N/4 (i.e., the denominator in W), not k.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:42, 7 September 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 28:</td> <td colspan="2" class="diff-lineno">Line 28:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;X_k = U_k + \omega_N^k Z_k + \omega_N^{3k} Z'_k.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;X_k = U_k + \omega_N^k Z_k + \omega_N^{3k} Z'_k.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>This, however, performs unnecessary calculations, since &lt;math&gt;k \geq N/4&lt;/math&gt; turn out to share many calculations with &lt;math&gt;k &lt; N/4&lt;/math&gt;. In particular, if we add ''N''/4 to ''k'', the size-''N''/4 DFTs are not changed (because they are periodic in ''<del style="font-weight: bold; text-decoration: none;">k</del>''), while the size-''N''/2 DFT is unchanged if we add ''N''/2 to ''k''. So, the only things that change are the &lt;math&gt;\omega_N^k&lt;/math&gt; and &lt;math&gt;\omega_N^{3k}&lt;/math&gt; terms, known as [[twiddle factor]]s. Here, we use the identities:</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>This, however, performs unnecessary calculations, since &lt;math&gt;k \geq N/4&lt;/math&gt; turn out to share many calculations with &lt;math&gt;k &lt; N/4&lt;/math&gt;. In particular, if we add ''N''/4 to ''k'', the size-''N''/4 DFTs are not changed (because they are periodic in ''<ins style="font-weight: bold; text-decoration: none;">N</ins>''<ins style="font-weight: bold; text-decoration: none;">/4</ins>), while the size-''N''/2 DFT is unchanged if we add ''N''/2 to ''k''. So, the only things that change are the &lt;math&gt;\omega_N^k&lt;/math&gt; and &lt;math&gt;\omega_N^{3k}&lt;/math&gt; terms, known as [[twiddle factor]]s. Here, we use the identities:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\omega_N^{k+N/4} = -i \omega_N^k&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\omega_N^{k+N/4} = -i \omega_N^k&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\omega_N^{3(k+N/4)} = i \omega_N^{3k}&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\omega_N^{3(k+N/4)} = i \omega_N^{3k}&lt;/math&gt;</div></td> </tr> </table> 134.134.137.85 https://en.wikipedia.org/w/index.php?title=Split-radix_FFT_algorithm&diff=866177603&oldid=prev JCW-CleanerBot: /* References */task, replaced: IEEE Trans. Signal Processing → IEEE Trans. Signal Process. 2018-10-28T19:41:20Z <p><span class="autocomment">References: </span><a href="/wiki/User:JCW-CleanerBot#Logic" title="User:JCW-CleanerBot">task</a>, replaced: IEEE Trans. Signal Processing → IEEE Trans. Signal Process.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:41, 28 October 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 50:</td> <td colspan="2" class="diff-lineno">Line 50:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* J. B. Martens, "Recursive cyclotomic factorization—a new algorithm for calculating the discrete Fourier transform," ''IEEE Trans. Acoust., Speech, Signal Processing'' '''32''' (4), 750–761 (1984).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* J. B. Martens, "Recursive cyclotomic factorization—a new algorithm for calculating the discrete Fourier transform," ''IEEE Trans. Acoust., Speech, Signal Processing'' '''32''' (4), 750–761 (1984).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* P. Duhamel and M. Vetterli, "Fast Fourier transforms: a tutorial review and a state of the art," ''Signal Processing'' '''19''', 259–299 (1990).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* P. Duhamel and M. Vetterli, "Fast Fourier transforms: a tutorial review and a state of the art," ''Signal Processing'' '''19''', 259–299 (1990).</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* S. G. Johnson and M. Frigo, "[http://www.fftw.org/newsplit.pdf A modified split-radix FFT with fewer arithmetic operations]," ''IEEE Trans. Signal <del style="font-weight: bold; text-decoration: none;">Processing</del>'' '''55''' (1), 111–119 (2007).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* S. G. Johnson and M. Frigo, "[http://www.fftw.org/newsplit.pdf A modified split-radix FFT with fewer arithmetic operations]," ''IEEE Trans. Signal <ins style="font-weight: bold; text-decoration: none;">Process.</ins>'' '''55''' (1), 111–119 (2007).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Douglas L. Jones, "[http://cnx.org/content/m12031/latest/ Split-radix FFT algorithms]," ''[http://cnx.org/ Connexions]'' web site (Nov. 2, 2006).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Douglas L. Jones, "[http://cnx.org/content/m12031/latest/ Split-radix FFT algorithms]," ''[http://cnx.org/ Connexions]'' web site (Nov. 2, 2006).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* H. V. Sorensen, M. T. Heideman, and C. S. Burrus, "On computing the split-radix FFT", ''IEEE Trans. Acoust., Speech, Signal Processing'' '''34''' (1), 152–156 (1986).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* H. V. Sorensen, M. T. Heideman, and C. S. Burrus, "On computing the split-radix FFT", ''IEEE Trans. Acoust., Speech, Signal Processing'' '''34''' (1), 152–156 (1986).</div></td> </tr> </table> JCW-CleanerBot https://en.wikipedia.org/w/index.php?title=Split-radix_FFT_algorithm&diff=843200697&oldid=prev InternetArchiveBot: Rescuing 1 sources and tagging 0 as dead. #IABot (v1.6.5) 2018-05-27T15:45:31Z <p>Rescuing 1 sources and tagging 0 as dead. #IABot (v1.6.5)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:45, 27 May 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley–Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley–Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [https://web.archive.org/web/20061130110013/http://home.comcast.net<del style="font-weight: bold; text-decoration: none;">:80</del>/~kmbtib/]), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [https://web.archive.org/web/20061130110013/http://home.comcast.net/~kmbtib/]), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix algorithm can only be applied when ''N'' is a multiple of 4, but since it breaks a DFT into smaller DFTs it can be combined with any other FFT algorithm as desired.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix algorithm can only be applied when ''N'' is a multiple of 4, but since it breaks a DFT into smaller DFTs it can be combined with any other FFT algorithm as desired.</div></td> </tr> </table> InternetArchiveBot https://en.wikipedia.org/w/index.php?title=Split-radix_FFT_algorithm&diff=839117285&oldid=prev Cherkash: fixed dashes using a script 2018-05-01T11:01:31Z <p>fixed <a href="/wiki/MOS:DASH" class="mw-redirect" title="MOS:DASH">dashes</a> using a <a href="/wiki/User:GregU/dashes.js" title="User:GregU/dashes.js">script</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:01, 1 May 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[<del style="font-weight: bold; text-decoration: none;">Cooley-Tukey</del> FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[<ins style="font-weight: bold; text-decoration: none;">Cooley–Tukey</ins> FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [https://web.archive.org/web/20061130110013/http://home.comcast.net:80/~kmbtib/]), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [https://web.archive.org/web/20061130110013/http://home.comcast.net:80/~kmbtib/]), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 21:</td> <td colspan="2" class="diff-lineno">Line 21:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where we have used the fact that &lt;math&gt;\omega_N^{m n k} = \omega_{N/m}^{n k}&lt;/math&gt;. These three sums correspond to ''portions'' of [[<del style="font-weight: bold; text-decoration: none;">Cooley-Tukey</del> FFT algorithm#The radix-2 DIT case|radix-2]] (size ''N''/2) and radix-4 (size ''N''/4) <del style="font-weight: bold; text-decoration: none;">Cooley-Tukey</del> steps, respectively. (The underlying idea is that the even-index subtransform of radix-2 has no multiplicative factor in front of it, so it should be left as-is, while the odd-index subtransform of radix-2 benefits by combining a second recursive subdivision.)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where we have used the fact that &lt;math&gt;\omega_N^{m n k} = \omega_{N/m}^{n k}&lt;/math&gt;. These three sums correspond to ''portions'' of [[<ins style="font-weight: bold; text-decoration: none;">Cooley–Tukey</ins> FFT algorithm#The radix-2 DIT case|radix-2]] (size ''N''/2) and radix-4 (size ''N''/4) <ins style="font-weight: bold; text-decoration: none;">Cooley–Tukey</ins> steps, respectively. (The underlying idea is that the even-index subtransform of radix-2 has no multiplicative factor in front of it, so it should be left as-is, while the odd-index subtransform of radix-2 benefits by combining a second recursive subdivision.)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>These smaller summations are now exactly DFTs of length ''N''/2 and ''N''/4, which can be performed recursively and then recombined.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>These smaller summations are now exactly DFTs of length ''N''/2 and ''N''/4, which can be performed recursively and then recombined.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 49:</td> <td colspan="2" class="diff-lineno">Line 49:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* M. Vetterli and H. J. Nussbaumer, "Simple FFT and DCT algorithms with reduced number of operations," ''Signal Processing'' '''6''' (4), 267–278 (1984).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* M. Vetterli and H. J. Nussbaumer, "Simple FFT and DCT algorithms with reduced number of operations," ''Signal Processing'' '''6''' (4), 267–278 (1984).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* J. B. Martens, "Recursive cyclotomic factorization—a new algorithm for calculating the discrete Fourier transform," ''IEEE Trans. Acoust., Speech, Signal Processing'' '''32''' (4), 750–761 (1984).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* J. B. Martens, "Recursive cyclotomic factorization—a new algorithm for calculating the discrete Fourier transform," ''IEEE Trans. Acoust., Speech, Signal Processing'' '''32''' (4), 750–761 (1984).</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* P. Duhamel and M. Vetterli, "Fast Fourier transforms: a tutorial review and a state of the art," ''Signal Processing'' '''19''', <del style="font-weight: bold; text-decoration: none;">259&amp;ndash;299</del> (1990).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* P. Duhamel and M. Vetterli, "Fast Fourier transforms: a tutorial review and a state of the art," ''Signal Processing'' '''19''', <ins style="font-weight: bold; text-decoration: none;">259–299</ins> (1990).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* S. G. Johnson and M. Frigo, "[http://www.fftw.org/newsplit.pdf A modified split-radix FFT with fewer arithmetic operations]," ''IEEE Trans. Signal Processing'' '''55''' (1), 111–119 (2007).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* S. G. Johnson and M. Frigo, "[http://www.fftw.org/newsplit.pdf A modified split-radix FFT with fewer arithmetic operations]," ''IEEE Trans. Signal Processing'' '''55''' (1), 111–119 (2007).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Douglas L. Jones, "[http://cnx.org/content/m12031/latest/ Split-radix FFT algorithms]," ''[http://cnx.org/ Connexions]'' web site (Nov. 2, 2006).</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Douglas L. Jones, "[http://cnx.org/content/m12031/latest/ Split-radix FFT algorithms]," ''[http://cnx.org/ Connexions]'' web site (Nov. 2, 2006).</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* H. V. Sorensen, M. T. Heideman, and C. S. Burrus, "On computing the split-radix FFT", ''IEEE Trans. Acoust., Speech, Signal Processing'' '''34''' (1), <del style="font-weight: bold; text-decoration: none;">152-156</del> (1986).</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* H. V. Sorensen, M. T. Heideman, and C. S. Burrus, "On computing the split-radix FFT", ''IEEE Trans. Acoust., Speech, Signal Processing'' '''34''' (1), <ins style="font-weight: bold; text-decoration: none;">152–156</ins> (1986).</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:FFT algorithms]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:FFT algorithms]]</div></td> </tr> </table> Cherkash https://en.wikipedia.org/w/index.php?title=Split-radix_FFT_algorithm&diff=825955066&oldid=prev 77.179.220.188: /* Split-radix decomposition */ fix typo 2018-02-16T10:40:03Z <p><span class="autocomment">Split-radix decomposition: </span> fix typo</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:40, 16 February 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 10:</td> <td colspan="2" class="diff-lineno">Line 10:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;k&lt;/math&gt; is an integer ranging from &lt;math&gt;0&lt;/math&gt; to &lt;math&gt;N-1&lt;/math&gt; and &lt;math&gt;\omega_N&lt;/math&gt; denotes the primitive [[root of unity]]:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where &lt;math&gt;k&lt;/math&gt; is an integer ranging from &lt;math&gt;0&lt;/math&gt; to &lt;math&gt;N-1&lt;/math&gt; and &lt;math&gt;\omega_N&lt;/math&gt; denotes the primitive [[root of unity]]:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\omega_N = e^{-\frac{2\pi i}{N}},&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\omega_N = e^{-\frac{2\pi i}{N}},&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>and thus<del style="font-weight: bold; text-decoration: none;"> </del>:&lt;math&gt;\omega_N^N = 1&lt;/math&gt;.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>and thus:<ins style="font-weight: bold; text-decoration: none;"> </ins>&lt;math&gt;\omega_N^N = 1&lt;/math&gt;.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix algorithm works by expressing this summation in terms of three smaller summations. (Here, we give the "decimation in time" version of the split-radix FFT; the dual decimation in frequency version is essentially just the reverse of these steps.)</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix algorithm works by expressing this summation in terms of three smaller summations. (Here, we give the "decimation in time" version of the split-radix FFT; the dual decimation in frequency version is essentially just the reverse of these steps.)</div></td> </tr> </table> 77.179.220.188 https://en.wikipedia.org/w/index.php?title=Split-radix_FFT_algorithm&diff=757364126&oldid=prev InternetArchiveBot: Rescuing 1 sources and tagging 0 as dead. #IABot (v1.2.7.1) 2016-12-30T06:56:16Z <p>Rescuing 1 sources and tagging 0 as dead. #IABot (v1.2.7.1)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:56, 30 December 2016</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley-Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley-Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [http://home.comcast.net/~kmbtib/]<del style="font-weight: bold; text-decoration: none;">{{Dead link|date=September 2016}}</del>), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [<ins style="font-weight: bold; text-decoration: none;">https://web.archive.org/web/20061130110013/</ins>http://home.comcast.net<ins style="font-weight: bold; text-decoration: none;">:80</ins>/~kmbtib/]), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix algorithm can only be applied when ''N'' is a multiple of 4, but since it breaks a DFT into smaller DFTs it can be combined with any other FFT algorithm as desired.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix algorithm can only be applied when ''N'' is a multiple of 4, but since it breaks a DFT into smaller DFTs it can be combined with any other FFT algorithm as desired.</div></td> </tr> </table> InternetArchiveBot https://en.wikipedia.org/w/index.php?title=Split-radix_FFT_algorithm&diff=740790271&oldid=prev 131.155.220.150 at 09:09, 23 September 2016 2016-09-23T09:09:39Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:09, 23 September 2016</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley-Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete Fourier transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley-Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [http://home.comcast.net/~kmbtib/]), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [http://home.comcast.net/~kmbtib/]<ins style="font-weight: bold; text-decoration: none;">{{Dead link|date=September 2016}}</ins>), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix algorithm can only be applied when ''N'' is a multiple of 4, but since it breaks a DFT into smaller DFTs it can be combined with any other FFT algorithm as desired.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix algorithm can only be applied when ''N'' is a multiple of 4, but since it breaks a DFT into smaller DFTs it can be combined with any other FFT algorithm as desired.</div></td> </tr> </table> 131.155.220.150 https://en.wikipedia.org/w/index.php?title=Split-radix_FFT_algorithm&diff=680765835&oldid=prev Myasuda: capitalization 2015-09-13T01:25:36Z <p>capitalization</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:25, 13 September 2015</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete <del style="font-weight: bold; text-decoration: none;">fourier</del> transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley-Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''split-radix FFT''' is a [[fast Fourier transform]] (FFT) algorithm for computing the [[discrete <ins style="font-weight: bold; text-decoration: none;">Fourier</ins> transform]] (DFT), and was first described in an initially little-appreciated paper by [[R. Yavne]] (1968) and subsequently rediscovered simultaneously by various authors in 1984. (The name "split radix" was coined by two of these reinventors, [[Pierre Duhamel|P. Duhamel]] and [[Henk D. L. Hollmann|H. Hollmann]].) In particular, split radix is a variant of the [[Cooley-Tukey FFT algorithm]] that uses a blend of radices 2 and 4: it [[recursion|recursively]] expresses a DFT of length ''N'' in terms of one smaller DFT of length ''N''/2 and two smaller DFTs of length ''N''/4.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [http://home.comcast.net/~kmbtib/]), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The split-radix FFT, along with its variations, long had the distinction of achieving the lowest published arithmetic operation count (total exact number of required [[real number|real]] additions and multiplications) to compute a DFT of [[power of two|power-of-two]] sizes ''N''. The arithmetic count of the original split-radix algorithm was improved upon in 2004 (with the initial gains made in unpublished work by J. Van Buskirk via hand optimization for ''N''=64 [http://groups.google.com/group/comp.dsp/msg/9e002292accb8a8b] [http://home.comcast.net/~kmbtib/]), but it turns out that one can still achieve the new lowest count by a modification of split radix (Johnson and Frigo, 2007). Although the number of arithmetic operations is not the sole factor (or even necessarily the dominant factor) in determining the time required to compute a DFT on a [[computer]], the question of the minimum possible count is of longstanding theoretical interest. (No tight lower bound on the operation count has currently been proven.)</div></td> </tr> </table> Myasuda