https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Square_root_algorithms
Square root algorithms - Revision history
2025-06-01T08:44:13Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.3
https://en.wikipedia.org/w/index.php?title=Square_root_algorithms&diff=1292998274&oldid=prev
GuccizBud: /* Continued fraction expansion */ Copy edit ▸ Presentation ▸ Impossible to see the whole pink box on mobile! Presentation was optimized pre-smartphone ( 𝑖.𝑒. for desktop/laptop).
2025-05-30T02:09:20Z
<p><span class="autocomment">Continued fraction expansion: </span> Copy edit ▸ Presentation ▸ Impossible to see the whole pink box on mobile! Presentation was optimized pre-smartphone ( 𝑖.𝑒. for desktop/laptop).</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:09, 30 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 536:</td>
<td colspan="2" class="diff-lineno">Line 536:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block"> \sqrt{S} = a + \frac{r}{a + \sqrt{S}}. </math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block"> \sqrt{S} = a + \frac{r}{a + \sqrt{S}}. </math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>By applying this expression for <math>\sqrt{S}</math> to the denominator term of the fraction, we have</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>By applying this expression for <math>\sqrt{S}</math> to the denominator term of the fraction, we have<ins style="font-weight: bold; text-decoration: none;">:</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block"> \sqrt{S} = a + \frac{r}{a + (a + \frac{r}{a + \sqrt{S}})} = a + \frac{r}{2a + \frac{r}{a + \sqrt{S}}}. </math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block"> \sqrt{S} = a + \frac{r}{a + (a + \frac{r}{a + \sqrt{S}})} = a + \frac{r}{2a + \frac{r}{a + \sqrt{S}}}. </math></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><div style="<del style="font-weight: bold; text-decoration: none;">float:right; </del>padding:1em; margin:0 0 0 1em<del style="font-weight: bold; text-decoration: none;">; width:450px</del>; border:1px solid; background:#faf3ee;"></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><div style="padding:1em; margin:0 0 0 1em; border:1px solid; background:#faf3ee;"></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{np}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{center|'''<big>Compact notation</big>'''}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{center|'''<big>Compact notation</big>'''}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The numerator/denominator expansion for continued fractions (<del style="font-weight: bold; text-decoration: none;">see left</del>) is cumbersome to write as well as to embed in text formatting systems. So mathematicians have devised several alternative notations<del style="font-weight: bold; text-decoration: none;">,</del> <del style="font-weight: bold; text-decoration: none;">like<ref></del>see: <del style="font-weight: bold; text-decoration: none;">[[</del>Generalized continued fraction<del style="font-weight: bold; text-decoration: none;">#</del>Notation<del style="font-weight: bold; text-decoration: none;">]]</ref></del> </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The numerator/denominator expansion for continued fractions (<ins style="font-weight: bold; text-decoration: none;">above</ins>) is cumbersome to write as well as to embed in text formatting systems. So mathematicians have devised several alternative notations <ins style="font-weight: bold; text-decoration: none;">{{xref|(</ins>see: <ins style="font-weight: bold; text-decoration: none;">{{slink|</ins>Generalized continued fraction<ins style="font-weight: bold; text-decoration: none;">|</ins>Notation<ins style="font-weight: bold; text-decoration: none;">}})}}</ins> <ins style="font-weight: bold; text-decoration: none;">such as:</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block"></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block"></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\sqrt{S} = a+</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\sqrt{S} = a+</div></td>
</tr>
</table>
GuccizBud
https://en.wikipedia.org/w/index.php?title=Square_root_algorithms&diff=1292992734&oldid=prev
GuccizBud: /* Exponential identity */ Copy edit ▸ Presentation (was line-wrapping right after open parentheses symbol) and MTCE tags (citation request tag replaced with unreferenced section tag).
2025-05-30T01:17:44Z
<p><span class="autocomment">Exponential identity: </span> Copy edit ▸ Presentation (was line-wrapping right after open parentheses symbol) and MTCE tags (citation request tag replaced with unreferenced section tag).</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:17, 30 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 453:</td>
<td colspan="2" class="diff-lineno">Line 453:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Exponential identity==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Exponential identity==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{unreferenced section|date=May 2020}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[calculator|Pocket calculator]]s typically implement good routines to compute the [[exponential function]] and the [[natural logarithm]], and then compute the square root of ''S'' using the identity found using the properties of logarithms (<math>\ln x^n = n \ln x</math>) and exponentials (<math>e^{\ln x} = x</math>)<del style="font-weight: bold; text-decoration: none;">:{{cn|date=May 2020</del>}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[calculator|Pocket calculator]]s typically implement good routines to compute the [[exponential function]] and the [[natural logarithm]], and then compute the square root of ''S'' using the identity found using the properties of logarithms (<math>\ln x^n = n \ln x</math>) and exponentials <ins style="font-weight: bold; text-decoration: none;">{{nowrap|</ins>(<math>e^{\ln x} = x</math>)}}<ins style="font-weight: bold; text-decoration: none;">:</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block">\sqrt{S} = e^{\frac{1}{2}\ln S}.</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block">\sqrt{S} = e^{\frac{1}{2}\ln S}.</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The denominator in the fraction corresponds to the ''n''th root. In the case above the denominator is 2, hence the equation specifies that the square root is to be found. The same identity is used when computing square roots with [[logarithm table]]s or [[slide rule]]s.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The denominator in the fraction corresponds to the ''n''th root. In the case above the denominator is 2, hence the equation specifies that the square root is to be found. The same identity is used when computing square roots with [[logarithm table]]s or [[slide rule]]s.</div></td>
</tr>
</table>
GuccizBud
https://en.wikipedia.org/w/index.php?title=Square_root_algorithms&diff=1292983234&oldid=prev
GuccizBud: /* Initial estimate */ Copy edit ▸ Links ▸ "Mantissa" redirected to section within the same article (rather than the article top) that more directly addresses the word.
2025-05-29T23:47:37Z
<p><span class="autocomment">Initial estimate: </span> Copy edit ▸ Links ▸ "Mantissa" redirected to section within the same article (rather than the article top) that more directly addresses the word.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:47, 29 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 35:</td>
<td colspan="2" class="diff-lineno">Line 35:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Many iterative square root algorithms require an initial [[seed value]]. The seed must be a non-zero positive number; it should be between 1 and <math>S</math>, the number whose square root is desired, because the square root must be in that range. If the seed is far away from the root, the algorithm will require more iterations. If one initializes with <math>x_0=1</math> (or <math>S</math>), then approximately <math> \tfrac12 \vert \log_2 S \vert </math> iterations will be wasted just getting the order of magnitude of the root. It is therefore useful to have a rough estimate, which may have limited accuracy but is easy to calculate. In general, the better the initial estimate, the faster the convergence. For Newton's method, a seed somewhat larger than the root will converge slightly faster than a seed somewhat smaller than the root.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Many iterative square root algorithms require an initial [[seed value]]. The seed must be a non-zero positive number; it should be between 1 and <math>S</math>, the number whose square root is desired, because the square root must be in that range. If the seed is far away from the root, the algorithm will require more iterations. If one initializes with <math>x_0=1</math> (or <math>S</math>), then approximately <math> \tfrac12 \vert \log_2 S \vert </math> iterations will be wasted just getting the order of magnitude of the root. It is therefore useful to have a rough estimate, which may have limited accuracy but is easy to calculate. In general, the better the initial estimate, the faster the convergence. For Newton's method, a seed somewhat larger than the root will converge slightly faster than a seed somewhat smaller than the root.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In general, an estimate is pursuant to an arbitrary interval known to contain the root (such as <math>[x_0,S/x_0]</math>). The estimate is a specific value of a functional approximation to <math>f(x)=\sqrt{x}</math> over the interval. Obtaining a better estimate involves either obtaining tighter bounds on the interval, or finding a better functional approximation to <math>f(x)</math>. The latter usually means using a higher order polynomial in the approximation, though not all approximations are polynomial. Common methods of estimating include scalar, linear, hyperbolic and logarithmic. A decimal base is usually used for mental or paper-and-pencil estimating. A binary base is more suitable for computer estimates. In estimating, the exponent and [[<del style="font-weight: bold; text-decoration: none;">mantissa</del> (logarithm)|mantissa]] are usually treated separately, as the number would be expressed in scientific notation.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In general, an estimate is pursuant to an arbitrary interval known to contain the root (such as <math>[x_0,S/x_0]</math>). The estimate is a specific value of a functional approximation to <math>f(x)=\sqrt{x}</math> over the interval. Obtaining a better estimate involves either obtaining tighter bounds on the interval, or finding a better functional approximation to <math>f(x)</math>. The latter usually means using a higher order polynomial in the approximation, though not all approximations are polynomial. Common methods of estimating include scalar, linear, hyperbolic and logarithmic. A decimal base is usually used for mental or paper-and-pencil estimating. A binary base is more suitable for computer estimates. In estimating, the exponent and [[<ins style="font-weight: bold; text-decoration: none;">Mantissa</ins> (logarithm)<ins style="font-weight: bold; text-decoration: none;">#Mantissa and characteristic</ins>|mantissa]] are usually treated separately, as the number would be expressed in scientific notation.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Decimal estimates===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Decimal estimates===</div></td>
</tr>
</table>
GuccizBud
https://en.wikipedia.org/w/index.php?title=Square_root_algorithms&diff=1291048573&oldid=prev
Fgnievinski at 19:12, 18 May 2025
2025-05-18T19:12:58Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:12, 18 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''<del style="font-weight: bold; text-decoration: none;">Methods</del> <del style="font-weight: bold; text-decoration: none;">of</del> <del style="font-weight: bold; text-decoration: none;">computing square roots</del>''' <del style="font-weight: bold; text-decoration: none;">are [[algorithm]]s for approximating</del> the non-negative [[square root]] <math>\sqrt{S}</math> of a positive [[real number]] <math>S</math>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''<ins style="font-weight: bold; text-decoration: none;">Square</ins> <ins style="font-weight: bold; text-decoration: none;">root</ins> <ins style="font-weight: bold; text-decoration: none;">algorithms</ins>''' <ins style="font-weight: bold; text-decoration: none;">compute</ins> the non-negative [[square root]] <math>\sqrt{S}</math> of a positive [[real number]] <math>S</math>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Since all square roots of [[natural number]]s, other than of [[square number|perfect square]]s, are [[Irrational number|irrational]],{{sfn|Jackson|2011}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Since all square roots of [[natural number]]s, other than of [[square number|perfect square]]s, are [[Irrational number|irrational]],{{sfn|Jackson|2011}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>square roots can usually only be computed to some finite precision: these <del style="font-weight: bold; text-decoration: none;">methods</del> typically construct a series of increasingly accurate [[Numerical approximation|approximations]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>square roots can usually only be computed to some finite precision: these <ins style="font-weight: bold; text-decoration: none;">[[algorithm]]s</ins> typically construct a series of increasingly accurate [[Numerical approximation|approximations]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Most square root computation methods are iterative: after choosing a suitable [[#Initial estimate|initial estimate]] of <math>\sqrt{S}</math>, an iterative refinement is performed until some termination criterion is met.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Most square root computation methods are iterative: after choosing a suitable [[#Initial estimate|initial estimate]] of <math>\sqrt{S}</math>, an iterative refinement is performed until some termination criterion is met.</div></td>
</tr>
</table>
Fgnievinski
https://en.wikipedia.org/w/index.php?title=Square_root_algorithms&diff=1291048048&oldid=prev
Fgnievinski: Fgnievinski moved page Methods of computing square roots to Square root algorithms
2025-05-18T19:08:57Z
<p>Fgnievinski moved page <a href="/wiki/Methods_of_computing_square_roots" class="mw-redirect" title="Methods of computing square roots">Methods of computing square roots</a> to <a href="/wiki/Square_root_algorithms" title="Square root algorithms">Square root algorithms</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<tr class="diff-title" lang="en">
<td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:08, 18 May 2025</td>
</tr><tr><td colspan="2" class="diff-notice" lang="en"><div class="mw-diff-empty">(No difference)</div>
</td></tr></table>
Fgnievinski
https://en.wikipedia.org/w/index.php?title=Square_root_algorithms&diff=1287579309&oldid=prev
Dominic3203: /* top */
2025-04-27T04:28:03Z
<p><span class="autocomment">top</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:28, 27 April 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 635:</td>
<td colspan="2" class="diff-lineno">Line 635:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>--></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>--></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{see also|binary logarithm}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A number is represented in a [[floating point]] format as <math>m\times b^p</math> which is also called [[scientific notation]]. Its square root is <math>\sqrt{m}\times b^{p/2}</math> and similar formulae would apply for cube roots and logarithms. On the face of it, this is no improvement in simplicity, but suppose that only an approximation is required: then just <math>b^{p/2}</math> is good to an order of magnitude. Next, recognise that some powers, {{mvar|p}}, will be odd, thus for 3141.59 = 3.14159{{x10^|3}} rather than deal with fractional powers of the base, multiply the mantissa by the base and subtract one from the power to make it even. The adjusted representation will become the equivalent of 31.4159{{x10^|2}} so that the square root will be {{radic|31.4159}}{{x10^|1}}.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A number is represented in a [[floating point]] format as <math>m\times b^p</math> which is also called [[scientific notation]]. Its square root is <math>\sqrt{m}\times b^{p/2}</math> and similar formulae would apply for cube roots and logarithms. On the face of it, this is no improvement in simplicity, but suppose that only an approximation is required: then just <math>b^{p/2}</math> is good to an order of magnitude. Next, recognise that some powers, {{mvar|p}}, will be odd, thus for 3141.59 = 3.14159{{x10^|3}} rather than deal with fractional powers of the base, multiply the mantissa by the base and subtract one from the power to make it even. The adjusted representation will become the equivalent of 31.4159{{x10^|2}} so that the square root will be {{radic|31.4159}}{{x10^|1}}.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
Dominic3203
https://en.wikipedia.org/w/index.php?title=Square_root_algorithms&diff=1283751848&oldid=prev
195.195.176.156: /* History */
2025-04-03T12:51:46Z
<p><span class="autocomment">History</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:51, 3 April 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 22:</td>
<td colspan="2" class="diff-lineno">Line 22:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==History==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==History==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Procedures for finding square roots (particularly the [[square root of 2]]) have been known since at least the period of ancient Babylon in the 17th century BCE. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Procedures for finding square roots (particularly the [[square root of 2]]) have been known since at least the period of ancient Babylon in the 17th century BCE. </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Babylonian mathematics|Babylonian mathematicians]] calculated the square root of 2 to three sexagesimal "digits" after the 1, but it is not known exactly how. They knew how to approximate a hypotenuse using</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Babylonian mathematics|Babylonian mathematicians]] calculated the square root of 2 to three <ins style="font-weight: bold; text-decoration: none;">[[</ins>sexagesimal<ins style="font-weight: bold; text-decoration: none;">]]</ins> "digits" after the 1, but it is not known exactly how. They knew how to approximate a hypotenuse using</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block">\sqrt{a^2+b^2}\approx a+\frac{b^2}{2a}</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block">\sqrt{a^2+b^2}\approx a+\frac{b^2}{2a}</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>(giving for example <math>\frac{41}{60}+\frac{15}{3600}</math> for the diagonal of a gate whose height is <math>\frac{40}{60}</math> rods and whose width is <math>\frac{10}{60}</math> rods) and they may have used a similar approach for finding the approximation of <math>\sqrt 2.</math>{{sfn|Fowler|Robson|1998}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>(giving for example <math>\frac{41}{60}+\frac{15}{3600}</math> for the diagonal of a gate whose height is <math>\frac{40}{60}</math> rods and whose width is <math>\frac{10}{60}</math> rods) and they may have used a similar approach for finding the approximation of <math>\sqrt 2.</math>{{sfn|Fowler|Robson|1998}}</div></td>
</tr>
</table>
195.195.176.156
https://en.wikipedia.org/w/index.php?title=Square_root_algorithms&diff=1283295777&oldid=prev
Jdmartin86: /* Basic principle */ added "the"
2025-03-31T16:39:28Z
<p><span class="autocomment">Basic principle: </span> added "the"</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:39, 31 March 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 342:</td>
<td colspan="2" class="diff-lineno">Line 342:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div></math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>This expression allows us to find the square root by sequentially guessing the values of <math>a_i</math>s. Suppose that the numbers <math>a_1, \ldots, a_{m-1}</math> have already been guessed, then the ''m''-th term of the right-hand-side of above summation is given by <math>Y_{m} = \left[2 P_{m-1} + a_{m}\right] a_{m},</math> where <math display="inline">P_{m-1} = \sum_{i=1}^{m-1} a_i</math> is the approximate square root found so far. Now each new guess <math>a_m</math> should satisfy the recursion </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>This expression allows us to find the square root by sequentially guessing the values of <math>a_i</math>s. Suppose that the numbers <math>a_1, \ldots, a_{m-1}</math> have already been guessed, then the ''m''-th term of the right-hand-side of<ins style="font-weight: bold; text-decoration: none;"> the</ins> above summation is given by <math>Y_{m} = \left[2 P_{m-1} + a_{m}\right] a_{m},</math> where <math display="inline">P_{m-1} = \sum_{i=1}^{m-1} a_i</math> is the approximate square root found so far. Now each new guess <math>a_m</math> should satisfy the recursion </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block">X_{m} = X_{m-1} - Y_{m},</math> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div><math display="block">X_{m} = X_{m-1} - Y_{m},</math> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where <math>X_{m}</math> is the sum of all the terms after <math>Y_{m}</math>, i.e. the remainder, such that <math>X_m \geq 0</math> for all <math>1\leq m\leq n,</math> with initialization <math>X_0 = S.</math> When <math>X_n = 0,</math> the exact square root has been found; if not, then the sum of the <math>a_i</math>s gives a suitable approximation of the square root, with <math>X_n</math> being the approximation error.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where <math>X_{m}</math> is the sum of all the terms after <math>Y_{m}</math>, i.e. the remainder, such that <math>X_m \geq 0</math> for all <math>1\leq m\leq n,</math> with initialization <math>X_0 = S.</math> When <math>X_n = 0,</math> the exact square root has been found; if not, then the sum of the <math>a_i</math>s gives a suitable approximation of the square root, with <math>X_n</math> being the approximation error.</div></td>
</tr>
</table>
Jdmartin86
https://en.wikipedia.org/w/index.php?title=Square_root_algorithms&diff=1281072254&oldid=prev
172.56.153.22: Corrected link to "The Preparation of Programs for an Electronic Digital Computer" by Wilkes et al. (original link pointed to "A history of Greek mathematics" by Heath). Book does not detail a square root algorithm on page 146 but a closely related division algorithm.
2025-03-18T03:08:20Z
<p>Corrected link to "The Preparation of Programs for an Electronic Digital Computer" by Wilkes et al. (original link pointed to "A history of Greek mathematics" by Heath). Book does not detail a square root algorithm on page 146 but a closely related division algorithm.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:08, 18 March 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 918:</td>
<td colspan="2" class="diff-lineno">Line 918:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | year = 1951</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | year = 1951</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | oclc = 475783493</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> | oclc = 475783493</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div> | pages = [https://archive.org/details/<del style="font-weight: bold; text-decoration: none;">ahistorygreekma00heatgoog</del>/page/<del style="font-weight: bold; text-decoration: none;">n340</del> <del style="font-weight: bold; text-decoration: none;">323</del>]<del style="font-weight: bold; text-decoration: none;">–324</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> | pages = [https://archive.org/details/<ins style="font-weight: bold; text-decoration: none;">programsforelect00wilk</ins>/page/<ins style="font-weight: bold; text-decoration: none;">146</ins> <ins style="font-weight: bold; text-decoration: none;">146</ins>]<ins style="font-weight: bold; text-decoration: none;">–262</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div> | url = https://archive.org/details/<del style="font-weight: bold; text-decoration: none;">ahistorygreekma00heatgoog</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> | url = https://archive.org/details/<ins style="font-weight: bold; text-decoration: none;">programsforelect00wilk</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Refend}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Refend}}</div></td>
</tr>
</table>
172.56.153.22
https://en.wikipedia.org/w/index.php?title=Square_root_algorithms&diff=1280298910&oldid=prev
ScrabbleTiles: Restored revision 1280281421 by ScrabbleTiles (talk): Promotion
2025-03-13T19:41:08Z
<p>Restored revision 1280281421 by <a href="/wiki/Special:Contributions/ScrabbleTiles" title="Special:Contributions/ScrabbleTiles">ScrabbleTiles</a> (<a href="/wiki/User_talk:ScrabbleTiles" title="User talk:ScrabbleTiles">talk</a>): Promotion</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:41, 13 March 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 205:</td>
<td colspan="2" class="diff-lineno">Line 205:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Therefore <math>\sqrt{\,125348\,} \approx 354.0452</math> to seven significant figures. (The true value is 354.0451948551....) Notice that early iterations only needed to be computed to 1, 2 or 4 places to produce an accurate final answer.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Therefore <math>\sqrt{\,125348\,} \approx 354.0452</math> to seven significant figures. (The true value is 354.0451948551....) Notice that early iterations only needed to be computed to 1, 2 or 4 places to produce an accurate final answer.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>===Animation===</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[https://longhai.shinyapps.io/newtonsqrt/ This shiny app] provides an animated illustration of this algorithm. </div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Square Root Animation.png|thumb]]</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Convergence===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Convergence===</div></td>
</tr>
</table>
ScrabbleTiles