https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=VEGAS_algorithm
VEGAS algorithm - Revision history
2025-06-01T18:56:11Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.3
https://en.wikipedia.org/w/index.php?title=VEGAS_algorithm&diff=1099310946&oldid=prev
Fadesga: /* References */
2022-07-20T02:59:48Z
<p><span class="autocomment">References</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:59, 20 July 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 33:</td>
<td colspan="2" class="diff-lineno">Line 33:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Statistical algorithms]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Statistical algorithms]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Variance reduction]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Variance reduction]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{compu-physics-stub}}</div></td>
</tr>
</table>
Fadesga
https://en.wikipedia.org/w/index.php?title=VEGAS_algorithm&diff=1062637180&oldid=prev
Dajasj: WP:EL
2021-12-29T17:07:04Z
<p><a href="/wiki/Wikipedia:EL" class="mw-redirect" title="Wikipedia:EL">WP:EL</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:07, 29 December 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|issue=2|pages=192–203|doi=10.1016/0021-9991(78)90004-9|bibcode=1978JCoPh..27..192L}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell Preprint|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O|s2cid=18194240}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|issue=2|pages=192–203|doi=10.1016/0021-9991(78)90004-9|bibcode=1978JCoPh..27..192L}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell Preprint|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O|s2cid=18194240}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral. The [[GNU Scientific Library]] (GSL) provides a<del style="font-weight: bold; text-decoration: none;"> [https://www.gnu.org/software/gsl/doc/html/montecarlo.html?highlight=vegas</del> VEGAS routine<del style="font-weight: bold; text-decoration: none;">]</del>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral. The [[GNU Scientific Library]] (GSL) provides a VEGAS routine.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Sampling method==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Sampling method==</div></td>
</tr>
</table>
Dajasj
https://en.wikipedia.org/w/index.php?title=VEGAS_algorithm&diff=1055317887&oldid=prev
Citation bot: Alter: journal. Add: s2cid, issue. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_toolbar
2021-11-15T04:52:58Z
<p>Alter: journal. Add: s2cid, issue. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Abductive | #UCB_toolbar</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:52, 15 November 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|pages=192–203|doi=10.1016/0021-9991(78)90004-9|bibcode=1978JCoPh..27..192L}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell <del style="font-weight: bold; text-decoration: none;">preprint</del>|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27<ins style="font-weight: bold; text-decoration: none;">|issue=2</ins>|pages=192–203|doi=10.1016/0021-9991(78)90004-9|bibcode=1978JCoPh..27..192L}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell <ins style="font-weight: bold; text-decoration: none;">Preprint</ins>|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O<ins style="font-weight: bold; text-decoration: none;">|s2cid=18194240</ins>}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral. The [[GNU Scientific Library]] (GSL) provides a [https://www.gnu.org/software/gsl/doc/html/montecarlo.html?highlight=vegas VEGAS routine].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral. The [[GNU Scientific Library]] (GSL) provides a [https://www.gnu.org/software/gsl/doc/html/montecarlo.html?highlight=vegas VEGAS routine].</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=VEGAS_algorithm&diff=980008070&oldid=prev
I dream of horses: AWB cleanup patrol
2020-09-24T02:19:19Z
<p>AWB <a href="/wiki/Wikipedia:PATROL" class="mw-redirect" title="Wikipedia:PATROL">cleanup</a> patrol</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:19, 24 September 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|pages=<del style="font-weight: bold; text-decoration: none;">192-203</del>|doi=10.1016/0021-9991(78)90004-9|bibcode=1978JCoPh..27..192L}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell preprint|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|pages=<ins style="font-weight: bold; text-decoration: none;">192–203</ins>|doi=10.1016/0021-9991(78)90004-9|bibcode=1978JCoPh..27..192L}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell preprint|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral. The [[GNU Scientific Library]] (GSL) provides a [https://www.gnu.org/software/gsl/doc/html/montecarlo.html?highlight=vegas VEGAS routine].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral. The [[GNU Scientific Library]] (GSL) provides a [https://www.gnu.org/software/gsl/doc/html/montecarlo.html?highlight=vegas VEGAS routine].</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 28:</td>
<td colspan="2" class="diff-lineno">Line 28:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}<br /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}<br /></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computational physics]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computational physics]]</div></td>
</tr>
</table>
I dream of horses
https://en.wikipedia.org/w/index.php?title=VEGAS_algorithm&diff=970620308&oldid=prev
Histohob: Adding short description: "Algorithm" (Shortdesc helper)
2020-08-01T11:54:06Z
<p>Adding <a href="/wiki/Wikipedia:Short_description" title="Wikipedia:Short description">short description</a>: "Algorithm" (<a href="/wiki/Wikipedia:Shortdesc_helper" title="Wikipedia:Shortdesc helper">Shortdesc helper</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:54, 1 August 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|pages=192-203|doi=10.1016/0021-9991(78)90004-9|bibcode=1978JCoPh..27..192L}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell preprint|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|pages=192-203|doi=10.1016/0021-9991(78)90004-9|bibcode=1978JCoPh..27..192L}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell preprint|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
Histohob
https://en.wikipedia.org/w/index.php?title=VEGAS_algorithm&diff=963747203&oldid=prev
Comp.arch at 15:39, 21 June 2020
2020-06-21T15:39:39Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:39, 21 June 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|pages=192-203|doi=10.1016/0021-9991(78)90004-9|bibcode=1978JCoPh..27..192L}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell preprint|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|pages=192-203|doi=10.1016/0021-9991(78)90004-9|bibcode=1978JCoPh..27..192L}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell preprint|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral<ins style="font-weight: bold; text-decoration: none;">. The [[GNU Scientific Library]] (GSL) provides a [https://www.gnu.org/software/gsl/doc/html/montecarlo.html?highlight=vegas VEGAS routine]</ins>.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[GNU Scientific Library]] (GSL) provides a [https://www.gnu.org/software/gsl/doc/html/montecarlo.html?highlight=vegas VEGAS routine]</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Sampling method==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Sampling method==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 26:</td>
<td colspan="2" class="diff-lineno">Line 25:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Importance sampling]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Importance sampling]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>==<del style="font-weight: bold; text-decoration: none;"> </del>References<del style="font-weight: bold; text-decoration: none;"> </del>==</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}<br /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}<br /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
</tr>
</table>
Comp.arch
https://en.wikipedia.org/w/index.php?title=VEGAS_algorithm&diff=959753641&oldid=prev
Rjwilmsi: /* top */Journal cites:, added 1 Bibcode
2020-05-30T12:38:48Z
<p><span class="autocomment">top: </span>Journal cites:, added 1 Bibcode</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:38, 30 May 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|pages=192-203|doi=10.1016/0021-9991(78)90004-9}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell preprint|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''VEGAS algorithm''', due to [[G. Peter Lepage]],<ref name=Lepage1978>{{cite journal|last=Lepage|first=G.P.|title=A New Algorithm for Adaptive Multidimensional Integration|journal=Journal of Computational Physics|date=May 1978|volume=27|pages=192-203|doi=10.1016/0021-9991(78)90004-9<ins style="font-weight: bold; text-decoration: none;">|bibcode=1978JCoPh..27..192L</ins>}}</ref><ref name=Lepage1980>{{cite journal|last=Lepage|first=G.P.|title=VEGAS: An Adaptive Multi-dimensional Integration Program|journal=Cornell preprint|volume=CLNS 80-447|date=March 1980}}</ref><ref name=Ohl1999>{{cite journal|last=Ohl|first=T.|title=Vegas revisited: Adaptive Monte Carlo integration beyond factorization|journal=Computer Physics Communications|date=July 1999|volume=120|issue=1|pages=13–19|doi=10.1016/S0010-4655(99)00209-X|arxiv=hep-ph/9806432|bibcode=1999CoPhC.120...13O}}</ref> is a method for [[variance reduction|reducing error]] in [[Monte Carlo simulation]]s by using a known or approximate [[probability distribution]] function to concentrate the search in those areas of the [[integrand]] that make the greatest contribution to the final [[integral]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral.</div></td>
</tr>
</table>
Rjwilmsi
https://en.wikipedia.org/w/index.php?title=VEGAS_algorithm&diff=949851080&oldid=prev
Livingthingdan: minor updates to reflect link in the Monte Carlo page linking here.
2020-04-08T21:35:15Z
<p>minor updates to reflect link in the Monte Carlo page linking here.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:35, 8 April 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The VEGAS algorithm is based on [[importance sampling]]. It samples points from the probability distribution described by the function <math>|f|,</math> so that the points are concentrated in the regions that make the largest contribution to the integral.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_4_0_lhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_1_0_rhs"></a>The [[GNU Scientific Library]] (GSL) provides a [https://www.gnu.org/software/gsl/doc/html/montecarlo.html?highlight=vegas VEGAS routine]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Sampling method==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Sampling method==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 23:</td>
<td colspan="2" class="diff-lineno">Line 24:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Las Vegas algorithm]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Las Vegas algorithm]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Monte Carlo integration]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Monte Carlo integration]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [[Importance sampling]]</div></td>
</tr>
<tr>
<td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_1_0_rhs">⚫</a></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_4_0_lhs"></a><del style="font-weight: bold; text-decoration: none;">*</del>The [[GNU Scientific Library]] (GSL) provides a [https://www.gnu.org/software/gsl/doc/html/montecarlo.html?highlight=vegas VEGAS routine]</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>
Livingthingdan
https://en.wikipedia.org/w/index.php?title=VEGAS_algorithm&diff=911214779&oldid=prev
17387349L8764: /* Minimal correction and linkage to GSL VEGAS routine URL */
2019-08-17T10:14:12Z
<p><span class="autocomment">Minimal correction and linkage to GSL VEGAS routine URL</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:14, 17 August 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 23:</td>
<td colspan="2" class="diff-lineno">Line 23:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Las Vegas algorithm]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Las Vegas algorithm]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Monte Carlo integration]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Monte Carlo integration]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*The [[GNU Scientific Library]] (GSL) provides a [https://www.gnu.org/software/gsl/doc/html/montecarlo.html?highlight=vegas VEGAS routine]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}<ins style="font-weight: bold; text-decoration: none;"><br /></ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The [https://www.gnu.org/software/gsl GNU Scientific Library] provides VEGAS routines</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Monte Carlo methods]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computational physics]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Computational physics]]</div></td>
</tr>
</table>
17387349L8764
https://en.wikipedia.org/w/index.php?title=VEGAS_algorithm&diff=906905709&oldid=prev
Lihenryhfl: /* Sampling method */ Explicitly wrote out the previously undefined function I(f(x)). See Eq. 3 of A new algorithm for adaptive multidimensional integration (https://www.sciencedirect.com/science/article/pii/0021999178900049)
2019-07-19T03:01:16Z
<p><span class="autocomment">Sampling method: </span> Explicitly wrote out the previously undefined function I(f(x)). See Eq. 3 of A new algorithm for adaptive multidimensional integration (https://www.sciencedirect.com/science/article/pii/0021999178900049)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:01, 19 July 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Sampling method==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Sampling method==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Further|Importance sampling}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Further|Importance sampling}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In general, if the Monte Carlo integral of <math>f</math> is sampled with points distributed according to a probability distribution described by the function <math>g,</math> we obtain an estimate <math>\mathrm{E}_g(f; N),</math></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In general, if the Monte Carlo integral of <math>f<ins style="font-weight: bold; text-decoration: none;"></math> over a volume <math>\Omega</ins></math> is sampled with points distributed according to a probability distribution described by the function <math>g,</math> we obtain an estimate <math>\mathrm{E}_g(f; N),</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\mathrm{E}_g(f; N) = {1 \over N } \sum_i^N { f(x_i)} / g(x_i) .</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math>\mathrm{E}_g(f; N) = {1 \over N } \sum_i^N { f(x_i)} / g(x_i) .</math></div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 15:</td>
<td colspan="2" class="diff-lineno">Line 15:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where <math>\mathrm{Var}(f;N)</math> is the variance of the original estimate, <math>\mathrm{Var}(f; N) = \mathrm{E}(f^2; N) - (\mathrm{E}(f; N))^2.</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where <math>\mathrm{Var}(f;N)</math> is the variance of the original estimate, <math>\mathrm{Var}(f; N) = \mathrm{E}(f^2; N) - (\mathrm{E}(f; N))^2.</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>If the probability distribution is chosen as <math>g = |f|/<del style="font-weight: bold; text-decoration: none;">I(</del>|f<del style="font-weight: bold; text-decoration: none;">|</del>)</math> then it can be shown that the variance <math>\mathrm{Var}_g(f; N)</math> vanishes, and the error in the estimate will be zero. In practice it is not possible to sample from the exact distribution g for an arbitrary function, so importance sampling algorithms aim to produce efficient approximations to the desired distribution.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If the probability distribution is chosen as <math>g = |f|/<ins style="font-weight: bold; text-decoration: none;">\textstyle \int_\Omega </ins>|f<ins style="font-weight: bold; text-decoration: none;">(x</ins>)<ins style="font-weight: bold; text-decoration: none;">|dx </ins></math> then it can be shown that the variance <math>\mathrm{Var}_g(f; N)</math> vanishes, and the error in the estimate will be zero. In practice it is not possible to sample from the exact distribution g for an arbitrary function, so importance sampling algorithms aim to produce efficient approximations to the desired distribution.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Approximation of probability distribution==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Approximation of probability distribution==</div></td>
</tr>
</table>
Lihenryhfl