https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Visual_processingVisual processing - Revision history2025-06-28T10:29:03ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.7https://en.wikipedia.org/w/index.php?title=Visual_processing&diff=1288687671&oldid=prev89.148.61.85: less spooky sounding.2025-05-04T06:55:15Z<p>less spooky sounding.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:55, 4 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 10:</td>
<td colspan="2" class="diff-lineno">Line 10:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Top-down and bottom-up representations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Top-down and bottom-up representations==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The visual system is organized hierarchically, with anatomical areas that have specialized functions in visual processing. Low-level visual processing is concerned with determining different types of contrast among images projected onto the retina whereas high-level visual processing refers to the cognitive processes that integrate information from a variety of sources into the visual information that is represented in one's <del style="font-weight: bold; text-decoration: none;">consciousness</del>. Object processing, including tasks such as [[cognitive neuroscience of visual object recognition|object recognition]] and location, is an example of higher-level visual processing. High-level visual processing depends on both top-down and bottom-up processes. Bottom-up processing refers to the visual system's ability to use the incoming visual information, flowing in a unidirectional path from the retina to higher cortical areas. Top-down processing refers to the use of prior knowledge and context to process visual information and change the information conveyed by neurons, altering the way they are tuned to a stimulus. All areas of the visual pathway except for the retina are able to be influenced by top-down processing.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The visual system is organized hierarchically, with anatomical areas that have specialized functions in visual processing. Low-level visual processing is concerned with determining different types of contrast among images projected onto the retina whereas high-level visual processing refers to the cognitive processes that integrate information from a variety of sources into the visual information that is represented in one's <ins style="font-weight: bold; text-decoration: none;">mind</ins>. Object processing, including tasks such as [[cognitive neuroscience of visual object recognition|object recognition]] and location, is an example of higher-level visual processing. High-level visual processing depends on both top-down and bottom-up processes. Bottom-up processing refers to the visual system's ability to use the incoming visual information, flowing in a unidirectional path from the retina to higher cortical areas. Top-down processing refers to the use of prior knowledge and context to process visual information and change the information conveyed by neurons, altering the way they are tuned to a stimulus. All areas of the visual pathway except for the retina are able to be influenced by top-down processing.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>There is a traditional view that visual processing follows a feedforward system where there is a one-way process by which light is sent from the retina to higher cortical areas, however, there is increasing evidence that visual pathways operate bidirectionally, with both feedforward and feedback mechanisms in place that transmit information to and from lower and higher cortical areas.<ref>{{Cite journal|last1=Gilbert|first1=Charles D.|last2=Li|first2=Wu|date=May 2013|title=Top-down influences on visual processing|journal=Nature Reviews Neuroscience|language=en|volume=14|issue=5|pages=350–363|doi=10.1038/nrn3476|pmid=23595013|pmc=3864796|issn=1471-0048}}</ref> Various studies have demonstrated this idea that visual processing relies on both feedforward and feedback systems (Jensen et al., 2015; Layher et al., 2014; Lee, 2002). Various studies that recorded from early visual neurons in [[macaque]] monkeys found evidence that early visual neurons are sensitive to features both within their receptive fields and the global context of a scene.<ref name=":0">{{Cite journal|last1=Allman|first1=J.|last2=Miezin|first2=F.|last3=McGuinness|first3=E.|date=1985|title=Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons|journal=Annual Review of Neuroscience|volume=8|pages=407–430|doi=10.1146/annurev.ne.08.030185.002203|issn=0147-006X|pmid=3885829}}</ref> Two other monkey studies used [[electrophysiology]] to find different frequencies that are associated with feedforward and feedback processing in monkeys (Orban, 2008; Schenden & Ganis, 2005). Studies with monkeys have also shown that neurons in higher level visual areas are selective to certain stimuli. One study that used single unit recordings in macaque monkeys found that neurons in middle temporal visual area, also known as area MT or V5, were highly selective for both direction and speed (Maunsell & Van Essen, 1983).</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>There is a traditional view that visual processing follows a feedforward system where there is a one-way process by which light is sent from the retina to higher cortical areas, however, there is increasing evidence that visual pathways operate bidirectionally, with both feedforward and feedback mechanisms in place that transmit information to and from lower and higher cortical areas.<ref>{{Cite journal|last1=Gilbert|first1=Charles D.|last2=Li|first2=Wu|date=May 2013|title=Top-down influences on visual processing|journal=Nature Reviews Neuroscience|language=en|volume=14|issue=5|pages=350–363|doi=10.1038/nrn3476|pmid=23595013|pmc=3864796|issn=1471-0048}}</ref> Various studies have demonstrated this idea that visual processing relies on both feedforward and feedback systems (Jensen et al., 2015; Layher et al., 2014; Lee, 2002). Various studies that recorded from early visual neurons in [[macaque]] monkeys found evidence that early visual neurons are sensitive to features both within their receptive fields and the global context of a scene.<ref name=":0">{{Cite journal|last1=Allman|first1=J.|last2=Miezin|first2=F.|last3=McGuinness|first3=E.|date=1985|title=Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons|journal=Annual Review of Neuroscience|volume=8|pages=407–430|doi=10.1146/annurev.ne.08.030185.002203|issn=0147-006X|pmid=3885829}}</ref> Two other monkey studies used [[electrophysiology]] to find different frequencies that are associated with feedforward and feedback processing in monkeys (Orban, 2008; Schenden & Ganis, 2005). Studies with monkeys have also shown that neurons in higher level visual areas are selective to certain stimuli. One study that used single unit recordings in macaque monkeys found that neurons in middle temporal visual area, also known as area MT or V5, were highly selective for both direction and speed (Maunsell & Van Essen, 1983).</div></td>
</tr>
</table>89.148.61.85https://en.wikipedia.org/w/index.php?title=Visual_processing&diff=1288686475&oldid=prev89.148.61.85: there is NO such thing as a type of energy that is unique to visual light. electromagnetic {radiant} energy is what it is.2025-05-04T06:41:15Z<p>there is NO such thing as a type of energy that is unique to visual light. electromagnetic {radiant} energy is what it is.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 06:41, 4 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 4:</td>
<td colspan="2" class="diff-lineno">Line 4:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Visual processing''' is the [[brain]]'s ability to use and interpret [[Visual perception|visual information]] from the world. The process of converting [[light]] into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Visual processing''' is the [[brain]]'s ability to use and interpret [[Visual perception|visual information]] from the world. The process of converting [[light]] into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>On an anatomical level, light<del style="font-weight: bold; text-decoration: none;"> energy</del> first enters the [[eye]] through the [[cornea]], where the light is bent. After passing through the cornea, light passes through the [[pupil]] and then the [[Lens (anatomy)|lens]] of the eye, where it is bent to a greater degree and focused upon the retina. The [[retina]] is where a group of light-sensing cells called [[Photoreceptor cell|photoreceptors]] are located. There are two types of photoreceptors: [[Rod cell|rods]] and [[Cone cell|cones]]. Rods are sensitive to dim light, and cones are better able to transduce bright light. Photoreceptors connect to [[Bipolar neuron|bipolar cells]], which induce [[action potentials]] in [[retinal ganglion cells]]. These retinal ganglion cells form a bundle at the [[optic disc]], which is a part of the [[optic nerve]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>On an anatomical level, light first enters the [[eye]] through the [[cornea]], where the light is bent. After passing through the cornea, light passes through the [[pupil]] and then the [[Lens (anatomy)|lens]] of the eye, where it is bent to a greater degree and focused upon the retina. The [[retina]] is where a group of light-sensing cells called [[Photoreceptor cell|photoreceptors]] are located. There are two types of photoreceptors: [[Rod cell|rods]] and [[Cone cell|cones]]. Rods are sensitive to dim light, and cones are better able to transduce bright light. Photoreceptors connect to [[Bipolar neuron|bipolar cells]], which induce [[action potentials]] in [[retinal ganglion cells]]. These retinal ganglion cells form a bundle at the [[optic disc]], which is a part of the [[optic nerve]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The two optic nerves from each eye meet at the [[optic chiasm]], where nerve fibers from each nasal retina cross. This results in the right half of each eye's visual field being represented in the [[left hemisphere]] and the left half of each eye's visual fields being represented in the [[right hemisphere]]. The optic tract then diverges into two visual pathways, the [[geniculostriate pathway]] and the [[tectopulvinar pathway]], which send visual information to the [[visual cortex]] of the [[occipital lobe]] for higher level processing (Whishaw and Kolb, 2015).</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The two optic nerves from each eye meet at the [[optic chiasm]], where nerve fibers from each nasal retina cross. This results in the right half of each eye's visual field being represented in the [[left hemisphere]] and the left half of each eye's visual fields being represented in the [[right hemisphere]]. The optic tract then diverges into two visual pathways, the [[geniculostriate pathway]] and the [[tectopulvinar pathway]], which send visual information to the [[visual cortex]] of the [[occipital lobe]] for higher level processing (Whishaw and Kolb, 2015).</div></td>
</tr>
</table>89.148.61.85https://en.wikipedia.org/w/index.php?title=Visual_processing&diff=1288458872&oldid=prevAwerDiWeGo: ce2025-05-02T19:40:23Z<p>ce</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:40, 2 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{distinguish|image processing}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{distinguish|image processing}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Visual processing''' is the [[<del style="font-weight: bold; text-decoration: none;">Human </del>brain<del style="font-weight: bold; text-decoration: none;">|brain'</del>]]s ability to use and interpret [[Visual perception|visual information]] from the world. The process of converting [[light]]<del style="font-weight: bold; text-decoration: none;">,</del> into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Visual processing''' is the [[brain]]<ins style="font-weight: bold; text-decoration: none;">'</ins>s ability to use and interpret [[Visual perception|visual information]] from the world. The process of converting [[light]] into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>On an anatomical level, light energy first enters the [[eye]] through the [[cornea]], where the light is bent. After passing through the cornea, light passes through the [[pupil]] and then the [[Lens (anatomy)|lens]] of the eye, where it is bent to a greater degree and focused upon the retina. The [[retina]] is where a group of light-sensing cells called [[Photoreceptor cell|photoreceptors]] are located. There are two types of photoreceptors: [[Rod cell|rods]] and [[Cone cell|cones]]. Rods are sensitive to dim light, and cones are better able to transduce bright light. Photoreceptors connect to [[Bipolar neuron|bipolar cells]], which induce [[action potentials]] in [[retinal ganglion cells]]. These retinal ganglion cells form a bundle at the [[optic disc]], which is a part of the [[optic nerve]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>On an anatomical level, light energy first enters the [[eye]] through the [[cornea]], where the light is bent. After passing through the cornea, light passes through the [[pupil]] and then the [[Lens (anatomy)|lens]] of the eye, where it is bent to a greater degree and focused upon the retina. The [[retina]] is where a group of light-sensing cells called [[Photoreceptor cell|photoreceptors]] are located. There are two types of photoreceptors: [[Rod cell|rods]] and [[Cone cell|cones]]. Rods are sensitive to dim light, and cones are better able to transduce bright light. Photoreceptors connect to [[Bipolar neuron|bipolar cells]], which induce [[action potentials]] in [[retinal ganglion cells]]. These retinal ganglion cells form a bundle at the [[optic disc]], which is a part of the [[optic nerve]].</div></td>
</tr>
</table>AwerDiWeGohttps://en.wikipedia.org/w/index.php?title=Visual_processing&diff=1288432912&oldid=prevBogyBearAtAParty: /* top */there is no such thing as "light energy" that vanishes when it loses enough energy to become infrared or gain enough energy to become ultraviolet. We've been over this, it's either electromagnetic energy or just light.2025-05-02T16:12:46Z<p><span class="autocomment">top: </span>there is no such thing as "light energy" that vanishes when it loses enough energy to become infrared or gain enough energy to become ultraviolet. We've been over this, it's either electromagnetic energy or just light.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:12, 2 May 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{distinguish|image processing}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{distinguish|image processing}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Visual processing''' is the [[Human brain|brain']]s ability to use and interpret [[Visual perception|visual information]] from the world. The process of converting [[light]]<del style="font-weight: bold; text-decoration: none;"> energy</del> into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Visual processing''' is the [[Human brain|brain']]s ability to use and interpret [[Visual perception|visual information]] from the world. The process of converting [[light]]<ins style="font-weight: bold; text-decoration: none;">,</ins> into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>On an anatomical level, light energy first enters the [[eye]] through the [[cornea]], where the light is bent. After passing through the cornea, light passes through the [[pupil]] and then the [[Lens (anatomy)|lens]] of the eye, where it is bent to a greater degree and focused upon the retina. The [[retina]] is where a group of light-sensing cells called [[Photoreceptor cell|photoreceptors]] are located. There are two types of photoreceptors: [[Rod cell|rods]] and [[Cone cell|cones]]. Rods are sensitive to dim light, and cones are better able to transduce bright light. Photoreceptors connect to [[Bipolar neuron|bipolar cells]], which induce [[action potentials]] in [[retinal ganglion cells]]. These retinal ganglion cells form a bundle at the [[optic disc]], which is a part of the [[optic nerve]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>On an anatomical level, light energy first enters the [[eye]] through the [[cornea]], where the light is bent. After passing through the cornea, light passes through the [[pupil]] and then the [[Lens (anatomy)|lens]] of the eye, where it is bent to a greater degree and focused upon the retina. The [[retina]] is where a group of light-sensing cells called [[Photoreceptor cell|photoreceptors]] are located. There are two types of photoreceptors: [[Rod cell|rods]] and [[Cone cell|cones]]. Rods are sensitive to dim light, and cones are better able to transduce bright light. Photoreceptors connect to [[Bipolar neuron|bipolar cells]], which induce [[action potentials]] in [[retinal ganglion cells]]. These retinal ganglion cells form a bundle at the [[optic disc]], which is a part of the [[optic nerve]].</div></td>
</tr>
</table>BogyBearAtAPartyhttps://en.wikipedia.org/w/index.php?title=Visual_processing&diff=1271129465&oldid=prevVolunteer1234: WP:REFERS2025-01-22T18:28:57Z<p><a href="/wiki/Wikipedia:REFERS" class="mw-redirect" title="Wikipedia:REFERS">WP:REFERS</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:28, 22 January 2025</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{distinguish|image processing}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{distinguish|image processing}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Visual processing''' is<del style="font-weight: bold; text-decoration: none;"> a term that refers to</del> the [[Human brain|brain']]s ability to use and interpret [[Visual perception|visual information]] from the world. The process of converting [[light]] energy into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Visual processing''' is the [[Human brain|brain']]s ability to use and interpret [[Visual perception|visual information]] from the world. The process of converting [[light]] energy into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>On an anatomical level, light energy first enters the [[eye]] through the [[cornea]], where the light is bent. After passing through the cornea, light passes through the [[pupil]] and then the [[Lens (anatomy)|lens]] of the eye, where it is bent to a greater degree and focused upon the retina. The [[retina]] is where a group of light-sensing cells called [[Photoreceptor cell|photoreceptors]] are located. There are two types of photoreceptors: [[Rod cell|rods]] and [[Cone cell|cones]]. Rods are sensitive to dim light, and cones are better able to transduce bright light. Photoreceptors connect to [[Bipolar neuron|bipolar cells]], which induce [[action potentials]] in [[retinal ganglion cells]]. These retinal ganglion cells form a bundle at the [[optic disc]], which is a part of the [[optic nerve]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>On an anatomical level, light energy first enters the [[eye]] through the [[cornea]], where the light is bent. After passing through the cornea, light passes through the [[pupil]] and then the [[Lens (anatomy)|lens]] of the eye, where it is bent to a greater degree and focused upon the retina. The [[retina]] is where a group of light-sensing cells called [[Photoreceptor cell|photoreceptors]] are located. There are two types of photoreceptors: [[Rod cell|rods]] and [[Cone cell|cones]]. Rods are sensitive to dim light, and cones are better able to transduce bright light. Photoreceptors connect to [[Bipolar neuron|bipolar cells]], which induce [[action potentials]] in [[retinal ganglion cells]]. These retinal ganglion cells form a bundle at the [[optic disc]], which is a part of the [[optic nerve]].</div></td>
</tr>
</table>Volunteer1234https://en.wikipedia.org/w/index.php?title=Visual_processing&diff=1253789946&oldid=prevAwerDiWeGo: /* Development of the FFA and PPA in the brain */ Moved citation out of section heading and into the body of the section.2024-10-27T22:22:47Z<p><span class="autocomment">Development of the FFA and PPA in the brain: </span> Moved citation out of section heading and into the body of the section.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:22, 27 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 27:</td>
<td colspan="2" class="diff-lineno">Line 27:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The fusiform face area is located within the [[inferior temporal cortex]] in the [[fusiform gyrus]]. Similar to the PPA, the FFA exhibits higher neural activation when visually processing faces more so than places or buildings (Kanwisher et al., 1997). However, the fusiform area also shows activation for other stimuli and can be trained to specialize in the visual processing of objects of expertise. Past studies have investigated the activation of the FFA in people with specialized visual training, like bird watchers or car experts who have adapted a visual skill in identifying traits of birds and cars respectively. It has been shown that these experts have developed FFA activation for their specific visual expertise. Other experiments have studied the ability to develop expertise in the FFA using 'greebles', a visual stimulus generated to have a few components that can be combined to make a series of different configurations, much like how a variety of slightly different facial features can be used to construct a unique face. Participants were trained on their ability to distinguish greebles by differing features and had activation in the FFA measured periodically through their learning – the results after training demonstrated that greeble activation in the FFA increased over time whereas FFA responses to faces actually decreased with increased greeble training. These results suggested three major findings in regards to FFA in visual processing: firstly, the FFA does not exclusively process faces; secondly, the FFA demonstrates activation for 'expert' visual tasks and can be trained over time to adapt to new visual stimuli; lastly, the FFA does not maintain constant levels of activation for all stimuli and instead seems to 'share' activation in such a way that the most frequently viewed stimuli receives the greatest activation in the FFA as seen in the greebles study (Gauthier et al., 2000). </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The fusiform face area is located within the [[inferior temporal cortex]] in the [[fusiform gyrus]]. Similar to the PPA, the FFA exhibits higher neural activation when visually processing faces more so than places or buildings (Kanwisher et al., 1997). However, the fusiform area also shows activation for other stimuli and can be trained to specialize in the visual processing of objects of expertise. Past studies have investigated the activation of the FFA in people with specialized visual training, like bird watchers or car experts who have adapted a visual skill in identifying traits of birds and cars respectively. It has been shown that these experts have developed FFA activation for their specific visual expertise. Other experiments have studied the ability to develop expertise in the FFA using 'greebles', a visual stimulus generated to have a few components that can be combined to make a series of different configurations, much like how a variety of slightly different facial features can be used to construct a unique face. Participants were trained on their ability to distinguish greebles by differing features and had activation in the FFA measured periodically through their learning – the results after training demonstrated that greeble activation in the FFA increased over time whereas FFA responses to faces actually decreased with increased greeble training. These results suggested three major findings in regards to FFA in visual processing: firstly, the FFA does not exclusively process faces; secondly, the FFA demonstrates activation for 'expert' visual tasks and can be trained over time to adapt to new visual stimuli; lastly, the FFA does not maintain constant levels of activation for all stimuli and instead seems to 'share' activation in such a way that the most frequently viewed stimuli receives the greatest activation in the FFA as seen in the greebles study (Gauthier et al., 2000). </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>===Development of the FFA and PPA in the brain<del style="font-weight: bold; text-decoration: none;"> <ref name=":0" /></del>===</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>===Development of the FFA and PPA in the brain===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Some research suggests that the development of the FFA and the PPA is due to the specialization of certain visual tasks and their relation to other visual processing patterns in the brain. In particular, existing research shows that FFA activation falls within the area of the brain that processes the immediate field of vision, whereas PPA activation is located in areas of the brain that handle peripheral vision and vision just out of the direct field of vision (Levy et al., 2001). This suggests that the FFA and PPA may have developed certain specializations due to the common visual tasks within those fields of view. Because faces are commonly processed in the immediate field of vision, the parts of the brain that process the direct field of vision eventually also specialize in more detailed tasks like [[face perception|face recognition]]. The same concept applies to place: because buildings and locations are often viewed in their entirety either right outside of the field of vision or in an individual's periphery, any building or location visual specialization will be processed within the areas of the brain handling peripheral vision. As such, commonly seen shapes like houses and buildings become specialized in certain regions of the brain, i.e. the PPA.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Some research suggests that the development of the FFA and the PPA is due to the specialization of certain visual tasks and their relation to other visual processing patterns in the brain.<ins style="font-weight: bold; text-decoration: none;"><ref name=":0" /></ins> In particular, existing research shows that FFA activation falls within the area of the brain that processes the immediate field of vision, whereas PPA activation is located in areas of the brain that handle peripheral vision and vision just out of the direct field of vision (Levy et al., 2001). This suggests that the FFA and PPA may have developed certain specializations due to the common visual tasks within those fields of view. Because faces are commonly processed in the immediate field of vision, the parts of the brain that process the direct field of vision eventually also specialize in more detailed tasks like [[face perception|face recognition]]. The same concept applies to place: because buildings and locations are often viewed in their entirety either right outside of the field of vision or in an individual's periphery, any building or location visual specialization will be processed within the areas of the brain handling peripheral vision. As such, commonly seen shapes like houses and buildings become specialized in certain regions of the brain, i.e. the PPA.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
</tr>
</table>AwerDiWeGohttps://en.wikipedia.org/w/index.php?title=Visual_processing&diff=1249845159&oldid=prevAlan U. Kennington: /* Top-down and bottom-up representations */ Split an excessively long paragraph.2024-10-07T04:14:57Z<p><span class="autocomment">Top-down and bottom-up representations: </span> Split an excessively long paragraph.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:14, 7 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 10:</td>
<td colspan="2" class="diff-lineno">Line 10:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Top-down and bottom-up representations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Top-down and bottom-up representations==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The visual system is organized hierarchically, with anatomical areas that have specialized functions in visual processing. Low-level visual processing is concerned with determining different types of contrast among images projected onto the retina whereas high-level visual processing refers to the cognitive processes that integrate information from a variety of sources into the visual information that is represented in one's consciousness. Object processing, including tasks such as [[cognitive neuroscience of visual object recognition|object recognition]] and location, is an example of higher-level visual processing. High-level visual processing depends on both top-down and bottom-up processes. Bottom-up processing refers to the visual system's ability to use the incoming visual information, flowing in a unidirectional path from the retina to higher cortical areas. Top-down processing refers to the use of prior knowledge and context to process visual information and change the information conveyed by neurons, altering the way they are tuned to a stimulus. All areas of the visual pathway except for the retina are able to be influenced by top-down processing.<del style="font-weight: bold; text-decoration: none;"> </del>There is a traditional view that visual processing follows a feedforward system where there is a one-way process by which light is sent from the retina to higher cortical areas, however, there is increasing evidence that visual pathways operate bidirectionally, with both feedforward and feedback mechanisms in place that transmit information to and from lower and higher cortical areas.<ref>{{Cite journal|last1=Gilbert|first1=Charles D.|last2=Li|first2=Wu|date=May 2013|title=Top-down influences on visual processing|journal=Nature Reviews Neuroscience|language=en|volume=14|issue=5|pages=350–363|doi=10.1038/nrn3476|pmid=23595013|pmc=3864796|issn=1471-0048}}</ref> Various studies have demonstrated this idea that visual processing relies on both feedforward and feedback systems (Jensen et al., 2015; Layher et al., 2014; Lee, 2002). Various studies that recorded from early visual neurons in [[macaque]] monkeys found evidence that early visual neurons are sensitive to features both within their receptive fields and the global context of a scene.<ref name=":0">{{Cite journal|last1=Allman|first1=J.|last2=Miezin|first2=F.|last3=McGuinness|first3=E.|date=1985|title=Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons|journal=Annual Review of Neuroscience|volume=8|pages=407–430|doi=10.1146/annurev.ne.08.030185.002203|issn=0147-006X|pmid=3885829}}</ref> Two other monkey <del style="font-weight: bold; text-decoration: none;">study</del> used [[electrophysiology]] to find different frequencies that are associated with feedforward and feedback processing in monkeys (Orban, 2008; Schenden & Ganis, 2005). Studies with monkeys have also shown that neurons in higher level visual areas are selective to certain stimuli. One study that used single unit recordings in macaque monkeys found that neurons in middle temporal visual area, also known as area MT or V5, were highly selective for both direction and speed (Maunsell & Van Essen, 1983).</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The visual system is organized hierarchically, with anatomical areas that have specialized functions in visual processing. Low-level visual processing is concerned with determining different types of contrast among images projected onto the retina whereas high-level visual processing refers to the cognitive processes that integrate information from a variety of sources into the visual information that is represented in one's consciousness. Object processing, including tasks such as [[cognitive neuroscience of visual object recognition|object recognition]] and location, is an example of higher-level visual processing. High-level visual processing depends on both top-down and bottom-up processes. Bottom-up processing refers to the visual system's ability to use the incoming visual information, flowing in a unidirectional path from the retina to higher cortical areas. Top-down processing refers to the use of prior knowledge and context to process visual information and change the information conveyed by neurons, altering the way they are tuned to a stimulus. All areas of the visual pathway except for the retina are able to be influenced by top-down processing.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>There is a traditional view that visual processing follows a feedforward system where there is a one-way process by which light is sent from the retina to higher cortical areas, however, there is increasing evidence that visual pathways operate bidirectionally, with both feedforward and feedback mechanisms in place that transmit information to and from lower and higher cortical areas.<ref>{{Cite journal|last1=Gilbert|first1=Charles D.|last2=Li|first2=Wu|date=May 2013|title=Top-down influences on visual processing|journal=Nature Reviews Neuroscience|language=en|volume=14|issue=5|pages=350–363|doi=10.1038/nrn3476|pmid=23595013|pmc=3864796|issn=1471-0048}}</ref> Various studies have demonstrated this idea that visual processing relies on both feedforward and feedback systems (Jensen et al., 2015; Layher et al., 2014; Lee, 2002). Various studies that recorded from early visual neurons in [[macaque]] monkeys found evidence that early visual neurons are sensitive to features both within their receptive fields and the global context of a scene.<ref name=":0">{{Cite journal|last1=Allman|first1=J.|last2=Miezin|first2=F.|last3=McGuinness|first3=E.|date=1985|title=Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons|journal=Annual Review of Neuroscience|volume=8|pages=407–430|doi=10.1146/annurev.ne.08.030185.002203|issn=0147-006X|pmid=3885829}}</ref> Two other monkey <ins style="font-weight: bold; text-decoration: none;">studies</ins> used [[electrophysiology]] to find different frequencies that are associated with feedforward and feedback processing in monkeys (Orban, 2008; Schenden & Ganis, 2005). Studies with monkeys have also shown that neurons in higher level visual areas are selective to certain stimuli. One study that used single unit recordings in macaque monkeys found that neurons in middle temporal visual area, also known as area MT or V5, were highly selective for both direction and speed (Maunsell & Van Essen, 1983).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Disorders of higher-level visual processing==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Disorders of higher-level visual processing==</div></td>
</tr>
</table>Alan U. Kenningtonhttps://en.wikipedia.org/w/index.php?title=Visual_processing&diff=1249844677&oldid=prevAlan U. Kennington: Adjusted some of the punctuation. Also split the big introductory paragraph to improve readability.2024-10-07T04:09:55Z<p>Adjusted some of the punctuation. Also split the big introductory paragraph to improve readability.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:09, 7 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{distinguish|image processing}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{distinguish|image processing}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Visual processing''' is a term that <del style="font-weight: bold; text-decoration: none;">is used to refer</del> to the [[Human brain|brain']]s ability to use and interpret [[Visual perception|visual information]] from the world. The process of converting [[light]] energy into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.<del style="font-weight: bold; text-decoration: none;"> </del>On an anatomical level, light energy first enters the [[eye]] through the [[cornea]], where the light is bent. After passing through the cornea, light passes through the [[pupil]] and then [[Lens (anatomy)|lens]] of the eye, where it is bent to a greater degree and focused upon the retina. The [[retina]] is where a group of light-sensing cells<del style="font-weight: bold; text-decoration: none;">,</del> called [[Photoreceptor cell|photoreceptors]] are located. There are two types of photoreceptors: [[Rod cell|rods]] and [[Cone cell|cones]]. Rods are sensitive to dim light and cones are better able to transduce bright light. Photoreceptors connect to [[Bipolar neuron|bipolar cells]], which induce [[action potentials]] in [[retinal ganglion cells]]. These retinal ganglion cells form a bundle at the [[optic disc]], which is a part of the [[optic nerve]].<del style="font-weight: bold; text-decoration: none;"> </del>The two optic nerves from each eye meet at the [[optic chiasm]], where nerve fibers from each nasal retina cross <del style="font-weight: bold; text-decoration: none;">which</del> results in the right half of each eye's visual field being represented in the [[left hemisphere]] and the left half of each eye's visual fields being represented in the [[right hemisphere]]. The optic tract then diverges into two visual pathways, the [[geniculostriate pathway]] and the [[tectopulvinar pathway]], which send visual information to the [[visual cortex]] of the [[occipital lobe]] for higher level processing (Whishaw and Kolb, 2015).</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Visual processing''' is a term that <ins style="font-weight: bold; text-decoration: none;">refers</ins> to the [[Human brain|brain']]s ability to use and interpret [[Visual perception|visual information]] from the world. The process of converting [[light]] energy into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>On an anatomical level, light energy first enters the [[eye]] through the [[cornea]], where the light is bent. After passing through the cornea, light passes through the [[pupil]] and then<ins style="font-weight: bold; text-decoration: none;"> the</ins> [[Lens (anatomy)|lens]] of the eye, where it is bent to a greater degree and focused upon the retina. The [[retina]] is where a group of light-sensing cells called [[Photoreceptor cell|photoreceptors]] are located. There are two types of photoreceptors: [[Rod cell|rods]] and [[Cone cell|cones]]. Rods are sensitive to dim light<ins style="font-weight: bold; text-decoration: none;">,</ins> and cones are better able to transduce bright light. Photoreceptors connect to [[Bipolar neuron|bipolar cells]], which induce [[action potentials]] in [[retinal ganglion cells]]. These retinal ganglion cells form a bundle at the [[optic disc]], which is a part of the [[optic nerve]].</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The two optic nerves from each eye meet at the [[optic chiasm]], where nerve fibers from each nasal retina cross<ins style="font-weight: bold; text-decoration: none;">.</ins> <ins style="font-weight: bold; text-decoration: none;">This</ins> results in the right half of each eye's visual field being represented in the [[left hemisphere]] and the left half of each eye's visual fields being represented in the [[right hemisphere]]. The optic tract then diverges into two visual pathways, the [[geniculostriate pathway]] and the [[tectopulvinar pathway]], which send visual information to the [[visual cortex]] of the [[occipital lobe]] for higher level processing (Whishaw and Kolb, 2015).</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Top-down and bottom-up representations==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Top-down and bottom-up representations==</div></td>
</tr>
</table>Alan U. Kenningtonhttps://en.wikipedia.org/w/index.php?title=Visual_processing&diff=1242324374&oldid=prevPhlsph7: Undid revision 1242289771 by PeopleScientist (talk) removed recently added text, see User_talk:PeopleScientist#WP:UNDUEWEIGHT,_WP:SPAM,_WP:COI2024-08-26T07:04:44Z<p>Undid revision <a href="/wiki/Special:Diff/1242289771" title="Special:Diff/1242289771">1242289771</a> by <a href="/wiki/Special:Contributions/PeopleScientist" title="Special:Contributions/PeopleScientist">PeopleScientist</a> (<a href="/wiki/User_talk:PeopleScientist" title="User talk:PeopleScientist">talk</a>) removed recently added text, see <a href="/wiki/User_talk:PeopleScientist#WP:UNDUEWEIGHT,_WP:SPAM,_WP:COI" title="User talk:PeopleScientist">User_talk:PeopleScientist#WP:UNDUEWEIGHT,_WP:SPAM,_WP:COI</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:04, 26 August 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 23:</td>
<td colspan="2" class="diff-lineno">Line 23:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Development of the FFA and PPA in the brain <ref name=":0" />===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Development of the FFA and PPA in the brain <ref name=":0" />===</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Some research suggests that the development of the FFA and the PPA is due to the specialization of certain visual tasks and their relation to other visual processing patterns in the brain. In particular, existing research shows that FFA activation falls within the area of the brain that processes the immediate field of vision, whereas PPA activation is located in areas of the brain that handle peripheral vision and vision just out of the direct field of vision (Levy et al., 2001). This suggests that the FFA and PPA may have developed certain specializations due to the common visual tasks within those fields of view. Because faces are commonly processed in the immediate field of vision, the parts of the brain that process the direct field of vision eventually also specialize in more detailed tasks like [[face perception|face recognition]]. The same concept applies to place: because buildings and locations are often viewed in their entirety either right outside of the field of vision or in an individual's periphery, any building or location visual specialization will be processed within the areas of the brain handling peripheral vision. As such, commonly seen shapes like houses and buildings become specialized in certain regions of the brain, i.e. the PPA.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Some research suggests that the development of the FFA and the PPA is due to the specialization of certain visual tasks and their relation to other visual processing patterns in the brain. In particular, existing research shows that FFA activation falls within the area of the brain that processes the immediate field of vision, whereas PPA activation is located in areas of the brain that handle peripheral vision and vision just out of the direct field of vision (Levy et al., 2001). This suggests that the FFA and PPA may have developed certain specializations due to the common visual tasks within those fields of view. Because faces are commonly processed in the immediate field of vision, the parts of the brain that process the direct field of vision eventually also specialize in more detailed tasks like [[face perception|face recognition]]. The same concept applies to place: because buildings and locations are often viewed in their entirety either right outside of the field of vision or in an individual's periphery, any building or location visual specialization will be processed within the areas of the brain handling peripheral vision. As such, commonly seen shapes like houses and buildings become specialized in certain regions of the brain, i.e. the PPA.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== Associations with Other Individual Differences ==</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>=== Personality ===</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Large-scale meta-analyses have found numerous personality traits to be correlated with visual processing abilities, which are sometimes referred to as spatial processing abilities (e.g., spatial scanning, visual closure).<ref>{{Cite journal |last=Stanek |first=Kevin C. |last2=Ones |first2=Deniz S. |date=2023-06-06 |title=Meta-analytic relations between personality and cognitive ability |url=https://pnas.org/doi/10.1073/pnas.2212794120 |journal=Proceedings of the National Academy of Sciences |language=en |volume=120 |issue=23 |doi=10.1073/pnas.2212794120 |issn=0027-8424 |pmc=PMC10266031 |pmid=37252971}}</ref> For example, visualization ability demonstrated a corrected correlation of .20 with the intellect aspect of openness (and .24 with the ideas and .21 with the curiosity facets). In contrast, based on over 300,000 people, the corrected correlation with with the experiencing aspect was .02 and similarly small for related facets. The same pattern was observed for other visual processing abilities, like closure speed and flexibility of closure. </div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Another correlate of visual processing and visualization was observed for modesty (corrected r = -.11 and -.12, respectively).<ref>{{Cite book |last=Stanek |first=Kevin |url=https://umnlibraries.manifoldapp.org/projects/of-anchors-and-sails |title=Of Anchors & Sails: Personality-Ability Trait Constellations |last2=Ones |first2=Deniz |date=2023-11-20 |publisher=University of Minnesota |isbn=978-1-946135-98-8 |doi=10.24926/9781946135988}}</ref> These magnitudes are in-line with the relations observed with rugged individualism (sometimes referred to as stereotypical masculinity), which had a relation of .12. Previous research has also suggested sex differences in visual processing abilities.<ref>{{Cite journal |last=Kell |first=Harrison J. |last2=Lubinski |first2=David |date=2013-10-08 |title=Spatial Ability: A Neglected Talent in Educational and Occupational Settings |url=http://www.tandfonline.com/doi/abs/10.1080/02783193.2013.829896 |journal=Roeper Review |language=en |volume=35 |issue=4 |pages=219–230 |doi=10.1080/02783193.2013.829896 |issn=0278-3193}}</ref><ref>{{Cite journal |last=Reilly |first=David |last2=Neumann |first2=David L. |date=2013-05-01 |title=Gender-Role Differences in Spatial Ability: A Meta-Analytic Review |url=https://link.springer.com/article/10.1007/s11199-013-0269-0 |journal=Sex Roles |language=en |volume=68 |issue=9 |pages=521–535 |doi=10.1007/s11199-013-0269-0 |issn=1573-2762}}</ref></div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Neuroticism-related traits appear to be less associated with visual processing abilities than other dimensions of intelligence (e.g., fluid abilities), with an average corrected correlation of just -.08.</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
</tr>
</table>Phlsph7https://en.wikipedia.org/w/index.php?title=Visual_processing&diff=1242289771&oldid=prevPeopleScientist: Added new research about personality-reaction time relations from large-scale met-analyses.2024-08-26T00:56:48Z<p>Added new research about personality-reaction time relations from large-scale met-analyses.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:56, 26 August 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 23:</td>
<td colspan="2" class="diff-lineno">Line 23:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Development of the FFA and PPA in the brain <ref name=":0" />===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Development of the FFA and PPA in the brain <ref name=":0" />===</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Some research suggests that the development of the FFA and the PPA is due to the specialization of certain visual tasks and their relation to other visual processing patterns in the brain. In particular, existing research shows that FFA activation falls within the area of the brain that processes the immediate field of vision, whereas PPA activation is located in areas of the brain that handle peripheral vision and vision just out of the direct field of vision (Levy et al., 2001). This suggests that the FFA and PPA may have developed certain specializations due to the common visual tasks within those fields of view. Because faces are commonly processed in the immediate field of vision, the parts of the brain that process the direct field of vision eventually also specialize in more detailed tasks like [[face perception|face recognition]]. The same concept applies to place: because buildings and locations are often viewed in their entirety either right outside of the field of vision or in an individual's periphery, any building or location visual specialization will be processed within the areas of the brain handling peripheral vision. As such, commonly seen shapes like houses and buildings become specialized in certain regions of the brain, i.e. the PPA.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Some research suggests that the development of the FFA and the PPA is due to the specialization of certain visual tasks and their relation to other visual processing patterns in the brain. In particular, existing research shows that FFA activation falls within the area of the brain that processes the immediate field of vision, whereas PPA activation is located in areas of the brain that handle peripheral vision and vision just out of the direct field of vision (Levy et al., 2001). This suggests that the FFA and PPA may have developed certain specializations due to the common visual tasks within those fields of view. Because faces are commonly processed in the immediate field of vision, the parts of the brain that process the direct field of vision eventually also specialize in more detailed tasks like [[face perception|face recognition]]. The same concept applies to place: because buildings and locations are often viewed in their entirety either right outside of the field of vision or in an individual's periphery, any building or location visual specialization will be processed within the areas of the brain handling peripheral vision. As such, commonly seen shapes like houses and buildings become specialized in certain regions of the brain, i.e. the PPA.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Associations with Other Individual Differences ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>=== Personality ===</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Large-scale meta-analyses have found numerous personality traits to be correlated with visual processing abilities, which are sometimes referred to as spatial processing abilities (e.g., spatial scanning, visual closure).<ref>{{Cite journal |last=Stanek |first=Kevin C. |last2=Ones |first2=Deniz S. |date=2023-06-06 |title=Meta-analytic relations between personality and cognitive ability |url=https://pnas.org/doi/10.1073/pnas.2212794120 |journal=Proceedings of the National Academy of Sciences |language=en |volume=120 |issue=23 |doi=10.1073/pnas.2212794120 |issn=0027-8424 |pmc=PMC10266031 |pmid=37252971}}</ref> For example, visualization ability demonstrated a corrected correlation of .20 with the intellect aspect of openness (and .24 with the ideas and .21 with the curiosity facets). In contrast, based on over 300,000 people, the corrected correlation with with the experiencing aspect was .02 and similarly small for related facets. The same pattern was observed for other visual processing abilities, like closure speed and flexibility of closure. </div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Another correlate of visual processing and visualization was observed for modesty (corrected r = -.11 and -.12, respectively).<ref>{{Cite book |last=Stanek |first=Kevin |url=https://umnlibraries.manifoldapp.org/projects/of-anchors-and-sails |title=Of Anchors & Sails: Personality-Ability Trait Constellations |last2=Ones |first2=Deniz |date=2023-11-20 |publisher=University of Minnesota |isbn=978-1-946135-98-8 |doi=10.24926/9781946135988}}</ref> These magnitudes are in-line with the relations observed with rugged individualism (sometimes referred to as stereotypical masculinity), which had a relation of .12. Previous research has also suggested sex differences in visual processing abilities.<ref>{{Cite journal |last=Kell |first=Harrison J. |last2=Lubinski |first2=David |date=2013-10-08 |title=Spatial Ability: A Neglected Talent in Educational and Occupational Settings |url=http://www.tandfonline.com/doi/abs/10.1080/02783193.2013.829896 |journal=Roeper Review |language=en |volume=35 |issue=4 |pages=219–230 |doi=10.1080/02783193.2013.829896 |issn=0278-3193}}</ref><ref>{{Cite journal |last=Reilly |first=David |last2=Neumann |first2=David L. |date=2013-05-01 |title=Gender-Role Differences in Spatial Ability: A Meta-Analytic Review |url=https://link.springer.com/article/10.1007/s11199-013-0269-0 |journal=Sex Roles |language=en |volume=68 |issue=9 |pages=521–535 |doi=10.1007/s11199-013-0269-0 |issn=1573-2762}}</ref></div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Neuroticism-related traits appear to be less associated with visual processing abilities than other dimensions of intelligence (e.g., fluid abilities), with an average corrected correlation of just -.08.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==See also==</div></td>
</tr>
</table>PeopleScientist