https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Wavefront_expansion_algorithmWavefront expansion algorithm - Revision history2025-05-31T00:41:25ZRevision history for this page on the wikiMediaWiki 1.45.0-wmf.3https://en.wikipedia.org/w/index.php?title=Wavefront_expansion_algorithm&diff=1173987780&oldid=prevJosve05a: added orphan tag2023-09-05T16:02:41Z<p>added <a href="/wiki/CAT:O" class="mw-redirect" title="CAT:O">orphan</a> tag</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:02, 5 September 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Path planner similar to potential field method with breadth first search modification}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Path planner similar to potential field method with breadth first search modification}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Orphan|date=September 2023}}</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Rapid-parallel-path-planning-by-propagating-wavefronts-of-spiking-neural-activity-Movie1.ogv|thumb|Path planning is realized with propagating wavefronts]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Rapid-parallel-path-planning-by-propagating-wavefronts-of-spiking-neural-activity-Movie1.ogv|thumb|Path planning is realized with propagating wavefronts]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 7:</td>
<td colspan="2" class="diff-lineno">Line 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Before a robot is able to navigate a map it needs a plan.<ref>{{cite journal |doi=10.1163/156856306777924671 |year=2006 |publisher=Brill |volume=3 |number=3 |pages=285–306 |author=Chytra Pawashe and Metin Sitti |title=Two-dimensional vision-based autonomous microparticle manipulation using a nanoprobe |journal=Journal of Micromechatronics|s2cid=18241136 |doi-access=free }}</ref> The plan is a trajectory from start to goal and describes, for each moment in time and each position in the map, the robot's next action. [[Pathfinding|Path planning]] is solved by many different algorithms, which can be categorised as sampling-based and heuristics-based approaches.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Before a robot is able to navigate a map it needs a plan.<ref>{{cite journal |doi=10.1163/156856306777924671 |year=2006 |publisher=Brill |volume=3 |number=3 |pages=285–306 |author=Chytra Pawashe and Metin Sitti |title=Two-dimensional vision-based autonomous microparticle manipulation using a nanoprobe |journal=Journal of Micromechatronics|s2cid=18241136 |doi-access=free }}</ref> The plan is a trajectory from start to goal and describes, for each moment in time and each position in the map, the robot's next action. [[Pathfinding|Path planning]] is solved by many different algorithms, which can be categorised as sampling-based and heuristics-based approaches.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Before path planning, the map is [[Discretization|discretized]] into a grid. The vector information is converted into a 2D array and stored in memory. The potential field path planning algorithm determines the direction of the robot for each cell. This direction field is shown overlaid on the [[Robotic mapping|robotic map]] containing the robot and the obstacles. The question for the potential field algorithm is: which cell is labeled with which direction? This can be answered with a [[<del style="font-weight: bold; text-decoration: none;">Motion_planning</del>#Sampling-<del style="font-weight: bold; text-decoration: none;">based_algorithms</del>|sampling-based algorithm]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Before path planning, the map is [[Discretization|discretized]] into a grid. The vector information is converted into a 2D array and stored in memory. The potential field path planning algorithm determines the direction of the robot for each cell. This direction field is shown overlaid on the [[Robotic mapping|robotic map]] containing the robot and the obstacles. The question for the potential field algorithm is: which cell is labeled with which direction? This can be answered with a [[<ins style="font-weight: bold; text-decoration: none;">Motion planning</ins>#Sampling-<ins style="font-weight: bold; text-decoration: none;">based algorithms</ins>|sampling-based algorithm]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Wavefront expansion==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Wavefront expansion==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 15:</td>
<td colspan="2" class="diff-lineno">Line 17:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementation==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementation==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Practical open-source implementations of the algorithm are available. The map of the world is provided as an array. Obstacles and the start position of the robot are given by special values in the array. The solver determines the goal direction in the imagined wave.<del style="font-weight: bold; text-decoration: none;"> </del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Practical open-source implementations of the algorithm are available. The map of the world is provided as an array. Obstacles and the start position of the robot are given by special values in the array. The solver determines the goal direction in the imagined wave.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Existing implementations use a [[Queue (abstract data type)|queue]] to store a wave data structure created around the robot. A typical implementation in [[Python (programming language)|Python]] can be realized in around 200 lines of code.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Existing implementations use a [[Queue (abstract data type)|queue]] to store a wave data structure created around the robot. A typical implementation in [[Python (programming language)|Python]] can be realized in around 200 lines of code.</div></td>
</tr>
</table>Josve05ahttps://en.wikipedia.org/w/index.php?title=Wavefront_expansion_algorithm&diff=1144357773&oldid=prevCitation bot: Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 2037/38502023-03-13T09:17:58Z<p>Removed proxy/dead URL that duplicated identifier. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Abductive | #UCB_webform 2037/3850</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:17, 13 March 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Motivation==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Motivation==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Before a robot is able to navigate a map it needs a plan.<ref>{{cite journal |doi=10.1163/156856306777924671 |year=2006 |publisher=Brill |volume=3 |number=3 |pages=285–306 |author=Chytra Pawashe and Metin Sitti |title=Two-dimensional vision-based autonomous microparticle manipulation using a nanoprobe |journal=Journal of Micromechatronics|s2cid=18241136<del style="font-weight: bold; text-decoration: none;"> |url=https://semanticscholar.org/paper/f17c71933185cadfc3427200438bcbadc296830a</del> |doi-access=free }}</ref> The plan is a trajectory from start to goal and describes, for each moment in time and each position in the map, the robot's next action. [[Pathfinding|Path planning]] is solved by many different algorithms, which can be categorised as sampling-based and heuristics-based approaches.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Before a robot is able to navigate a map it needs a plan.<ref>{{cite journal |doi=10.1163/156856306777924671 |year=2006 |publisher=Brill |volume=3 |number=3 |pages=285–306 |author=Chytra Pawashe and Metin Sitti |title=Two-dimensional vision-based autonomous microparticle manipulation using a nanoprobe |journal=Journal of Micromechatronics|s2cid=18241136 |doi-access=free }}</ref> The plan is a trajectory from start to goal and describes, for each moment in time and each position in the map, the robot's next action. [[Pathfinding|Path planning]] is solved by many different algorithms, which can be categorised as sampling-based and heuristics-based approaches.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Before path planning, the map is [[Discretization|discretized]] into a grid. The vector information is converted into a 2D array and stored in memory. The potential field path planning algorithm determines the direction of the robot for each cell. This direction field is shown overlaid on the [[Robotic mapping|robotic map]] containing the robot and the obstacles. The question for the potential field algorithm is: which cell is labeled with which direction? This can be answered with a [[Motion_planning#Sampling-based_algorithms|sampling-based algorithm]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Before path planning, the map is [[Discretization|discretized]] into a grid. The vector information is converted into a 2D array and stored in memory. The potential field path planning algorithm determines the direction of the robot for each cell. This direction field is shown overlaid on the [[Robotic mapping|robotic map]] containing the robot and the obstacles. The question for the potential field algorithm is: which cell is labeled with which direction? This can be answered with a [[Motion_planning#Sampling-based_algorithms|sampling-based algorithm]].</div></td>
</tr>
<!-- diff cache key enwiki:diff:1.41:old-1141999038:rev-1144357773:wikidiff2=table:1.14.1:ff290eae -->
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Wavefront_expansion_algorithm&diff=1141999038&oldid=prevVozul: removed barely relevant sidebar2023-02-28T00:12:44Z<p>removed barely relevant sidebar</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:12, 28 February 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Path planner similar to potential field method with breadth first search modification}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Path planner similar to potential field method with breadth first search modification}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Tree search algorithm}}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Rapid-parallel-path-planning-by-propagating-wavefronts-of-spiking-neural-activity-Movie1.ogv|thumb|Path planning is realized with propagating wavefronts]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Rapid-parallel-path-planning-by-propagating-wavefronts-of-spiking-neural-activity-Movie1.ogv|thumb|Path planning is realized with propagating wavefronts]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>Vozulhttps://en.wikipedia.org/w/index.php?title=Wavefront_expansion_algorithm&diff=1136164809&oldid=prevOAbot: Open access bot: doi added to citation with #oabot.2023-01-29T01:37:18Z<p><a href="/wiki/Wikipedia:OABOT" class="mw-redirect" title="Wikipedia:OABOT">Open access bot</a>: doi added to citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:37, 29 January 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 6:</td>
<td colspan="2" class="diff-lineno">Line 6:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Motivation==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Motivation==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Before a robot is able to navigate a map it needs a plan.<ref>{{cite journal |doi=10.1163/156856306777924671 |year=2006 |publisher=Brill |volume=3 |number=3 |pages=285–306 |author=Chytra Pawashe and Metin Sitti |title=Two-dimensional vision-based autonomous microparticle manipulation using a nanoprobe |journal=Journal of Micromechatronics|s2cid=18241136 |url=https://semanticscholar.org/paper/f17c71933185cadfc3427200438bcbadc296830a }}</ref> The plan is a trajectory from start to goal and describes, for each moment in time and each position in the map, the robot's next action. [[Pathfinding|Path planning]] is solved by many different algorithms, which can be categorised as sampling-based and heuristics-based approaches.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Before a robot is able to navigate a map it needs a plan.<ref>{{cite journal |doi=10.1163/156856306777924671 |year=2006 |publisher=Brill |volume=3 |number=3 |pages=285–306 |author=Chytra Pawashe and Metin Sitti |title=Two-dimensional vision-based autonomous microparticle manipulation using a nanoprobe |journal=Journal of Micromechatronics|s2cid=18241136 |url=https://semanticscholar.org/paper/f17c71933185cadfc3427200438bcbadc296830a<ins style="font-weight: bold; text-decoration: none;"> |doi-access=free</ins> }}</ref> The plan is a trajectory from start to goal and describes, for each moment in time and each position in the map, the robot's next action. [[Pathfinding|Path planning]] is solved by many different algorithms, which can be categorised as sampling-based and heuristics-based approaches.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Before path planning, the map is [[Discretization|discretized]] into a grid. The vector information is converted into a 2D array and stored in memory. The potential field path planning algorithm determines the direction of the robot for each cell. This direction field is shown overlaid on the [[Robotic mapping|robotic map]] containing the robot and the obstacles. The question for the potential field algorithm is: which cell is labeled with which direction? This can be answered with a [[Motion_planning#Sampling-based_algorithms|sampling-based algorithm]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Before path planning, the map is [[Discretization|discretized]] into a grid. The vector information is converted into a 2D array and stored in memory. The potential field path planning algorithm determines the direction of the robot for each cell. This direction field is shown overlaid on the [[Robotic mapping|robotic map]] containing the robot and the obstacles. The question for the potential field algorithm is: which cell is labeled with which direction? This can be answered with a [[Motion_planning#Sampling-based_algorithms|sampling-based algorithm]].</div></td>
</tr>
</table>OAbothttps://en.wikipedia.org/w/index.php?title=Wavefront_expansion_algorithm&diff=1071120764&oldid=prevCitation bot: Alter: template type. Add: s2cid. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_webform 488/5632022-02-11T00:05:09Z<p>Alter: template type. Add: s2cid. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by AManWithNoPlan | #UCB_webform 488/563</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:05, 11 February 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Rapid-parallel-path-planning-by-propagating-wavefronts-of-spiking-neural-activity-Movie1.ogv|thumb|Path planning is realized with propagating wavefronts]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Rapid-parallel-path-planning-by-propagating-wavefronts-of-spiking-neural-activity-Movie1.ogv|thumb|Path planning is realized with propagating wavefronts]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''wavefront expansion algorithm''' is a specialized [[potential method|potential field]] path planner with [[breadth-first search]] to avoid local minima.<ref>{{cite <del style="font-weight: bold; text-decoration: none;">arxiv</del> |title=A Feedback Motion Plan for Vehicles with Bounded Curvature Constraints |author=Miraglia, Giovanni and Hook, IV |eprint=1910.06460 |year=2019|class=cs.RO }}</ref><ref>{{cite conference |title=Fast trajectory planning for multiple site surveillance through moving obstacles and wind |author=Soulignac, Michael and Taillibert, Patrick |conference=Proceedings of the Workshop of the UK Planning and Scheduling Special Interest Group |pages=25–33 |year=2006}}</ref> It uses a growing circle around the robot. The [[Nearest neighbor search|nearest neighbors]] are analyzed first and then the radius of the circle is extended to distant regions.<ref>{{cite journal |title=Collective construction of numerical potential fields for the foraging problem |author=Simonin, Olivier and Charpillet, Francois and Thierry, Eric |year=2007 |journal=Research Report RR-6171, Inria-00143302v1}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''wavefront expansion algorithm''' is a specialized [[potential method|potential field]] path planner with [[breadth-first search]] to avoid local minima.<ref>{{cite <ins style="font-weight: bold; text-decoration: none;">arXiv</ins> |title=A Feedback Motion Plan for Vehicles with Bounded Curvature Constraints |author=Miraglia, Giovanni and Hook, IV |eprint=1910.06460 |year=2019|class=cs.RO }}</ref><ref>{{cite conference |title=Fast trajectory planning for multiple site surveillance through moving obstacles and wind |author=Soulignac, Michael and Taillibert, Patrick |conference=Proceedings of the Workshop of the UK Planning and Scheduling Special Interest Group |pages=25–33 |year=2006}}</ref> It uses a growing circle around the robot. The [[Nearest neighbor search|nearest neighbors]] are analyzed first and then the radius of the circle is extended to distant regions.<ref>{{cite journal |title=Collective construction of numerical potential fields for the foraging problem |author=Simonin, Olivier and Charpillet, Francois and Thierry, Eric |year=2007 |journal=Research Report RR-6171, Inria-00143302v1}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Motivation==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Motivation==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 13:</td>
<td colspan="2" class="diff-lineno">Line 13:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A sampling-based planner works by searching the graph. In the case of path planning, the graph contains the [[Spatial network|spatial nodes]] which can be observed by the robot. The wavefront expansion increases the performance of the search by analyzing only nodes near the robot. The decision is made on a geometrical level which is equal to breadth-first search.<ref>{{cite conference |doi=10.2514/6.2009-6113 |year=2009 |publisher=American Institute of Aeronautics and Astronautics |author=Anjan Chakrabarty and Jack Langelaan |title=Energy Maps for Long-Range Path Planning for Small- and Micro- UAVs |conference=AIAA Guidance, Navigation, and Control Conference }}</ref> That means, it uses metrics like distances from obstacles and [[Gradient method|gradient search]] for the path planning algorithm.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A sampling-based planner works by searching the graph. In the case of path planning, the graph contains the [[Spatial network|spatial nodes]] which can be observed by the robot. The wavefront expansion increases the performance of the search by analyzing only nodes near the robot. The decision is made on a geometrical level which is equal to breadth-first search.<ref>{{cite conference |doi=10.2514/6.2009-6113 |year=2009 |publisher=American Institute of Aeronautics and Astronautics |author=Anjan Chakrabarty and Jack Langelaan |title=Energy Maps for Long-Range Path Planning for Small- and Micro- UAVs |conference=AIAA Guidance, Navigation, and Control Conference }}</ref> That means, it uses metrics like distances from obstacles and [[Gradient method|gradient search]] for the path planning algorithm.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The algorithm includes a [[Loss function|cost function]] as an additional [[Heuristic (computer science)|heuristic]] for path planning.<ref>{{cite journal |doi=10.1109/tro.2010.2085790 |year=2011 |publisher=Institute of Electrical and Electronics Engineers (IEEE) |volume=27 |number=1 |pages=89–98 |author=Michaël Soulignac |title=Feasible and Optimal Path Planning in Strong Current Fields |journal=IEEE Transactions on Robotics }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The algorithm includes a [[Loss function|cost function]] as an additional [[Heuristic (computer science)|heuristic]] for path planning.<ref>{{cite journal |doi=10.1109/tro.2010.2085790 |year=2011 |publisher=Institute of Electrical and Electronics Engineers (IEEE) |volume=27 |number=1 |pages=89–98 |author=Michaël Soulignac |title=Feasible and Optimal Path Planning in Strong Current Fields |journal=IEEE Transactions on Robotics<ins style="font-weight: bold; text-decoration: none;"> |s2cid=17622757</ins> }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementation==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementation==</div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Wavefront_expansion_algorithm&diff=1071105096&oldid=prevQwerfjkl (bot): Capitalising short description "path planner similar to potential field method with breadth first search modification" per WP:SDFORMAT (via Bandersnatch)2022-02-10T22:02:21Z<p>Capitalising short description "path planner similar to potential field method with breadth first search modification" per <a href="/wiki/Wikipedia:SDFORMAT" class="mw-redirect" title="Wikipedia:SDFORMAT">WP:SDFORMAT</a> (via <a href="https://de.wikipedia.org/wiki/Benutzer:Schnark/js/bandersnatch" class="extiw" title="de:Benutzer:Schnark/js/bandersnatch">Bandersnatch</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:02, 10 February 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{<del style="font-weight: bold; text-decoration: none;">short</del> description|<del style="font-weight: bold; text-decoration: none;">path</del> planner similar to potential field method with breadth first search modification}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{<ins style="font-weight: bold; text-decoration: none;">Short</ins> description|<ins style="font-weight: bold; text-decoration: none;">Path</ins> planner similar to potential field method with breadth first search modification}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Tree search algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Tree search algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Rapid-parallel-path-planning-by-propagating-wavefronts-of-spiking-neural-activity-Movie1.ogv|thumb|Path planning is realized with propagating wavefronts]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Rapid-parallel-path-planning-by-propagating-wavefronts-of-spiking-neural-activity-Movie1.ogv|thumb|Path planning is realized with propagating wavefronts]]</div></td>
</tr>
</table>Qwerfjkl (bot)https://en.wikipedia.org/w/index.php?title=Wavefront_expansion_algorithm&diff=1071090233&oldid=prev24spiders: Fixed sentence that was missing a word2022-02-10T20:12:28Z<p>Fixed sentence that was missing a word</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:12, 10 February 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 18:</td>
<td colspan="2" class="diff-lineno">Line 18:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Practical open-source implementations of the algorithm are available. The map of the world is provided as an array. Obstacles and the start position of the robot are given by special values in the array. The solver determines the goal direction in the imagined wave. </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Practical open-source implementations of the algorithm are available. The map of the world is provided as an array. Obstacles and the start position of the robot are given by special values in the array. The solver determines the goal direction in the imagined wave. </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Existing implementations use a [[Queue (abstract data type)|queue]] to store a wave data structure created around the robot. A typical in [[Python (programming language)|Python]] can be realized in around 200 lines of code.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Existing implementations use a [[Queue (abstract data type)|queue]] to store a wave data structure created around the robot. A typical<ins style="font-weight: bold; text-decoration: none;"> implementation</ins> in [[Python (programming language)|Python]] can be realized in around 200 lines of code.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>24spidershttps://en.wikipedia.org/w/index.php?title=Wavefront_expansion_algorithm&diff=1053915096&oldid=prevMike Peel: Removing Commons category link that does not match this article (:commons:Category:Breadth-first search) (Commons category belongs at Breadth-first_search)2021-11-06T21:29:51Z<p>Removing Commons category link that does not match this article (<a href="https://commons.wikimedia.org/wiki/Category:Breadth-first_search" class="extiw" title="commons:Category:Breadth-first search">commons:Category:Breadth-first search</a>) (Commons category belongs at <a href="/wiki/Breadth-first_search" title="Breadth-first search">Breadth-first_search</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:29, 6 November 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 2:</td>
<td colspan="2" class="diff-lineno">Line 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Tree search algorithm}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Tree search algorithm}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Rapid-parallel-path-planning-by-propagating-wavefronts-of-spiking-neural-activity-Movie1.ogv|thumb|Path planning is realized with propagating wavefronts]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Rapid-parallel-path-planning-by-propagating-wavefronts-of-spiking-neural-activity-Movie1.ogv|thumb|Path planning is realized with propagating wavefronts]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Commons category|Breadth-first search}}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''wavefront expansion algorithm''' is a specialized [[potential method|potential field]] path planner with [[breadth-first search]] to avoid local minima.<ref>{{cite arxiv |title=A Feedback Motion Plan for Vehicles with Bounded Curvature Constraints |author=Miraglia, Giovanni and Hook, IV |eprint=1910.06460 |year=2019|class=cs.RO }}</ref><ref>{{cite conference |title=Fast trajectory planning for multiple site surveillance through moving obstacles and wind |author=Soulignac, Michael and Taillibert, Patrick |conference=Proceedings of the Workshop of the UK Planning and Scheduling Special Interest Group |pages=25–33 |year=2006}}</ref> It uses a growing circle around the robot. The [[Nearest neighbor search|nearest neighbors]] are analyzed first and then the radius of the circle is extended to distant regions.<ref>{{cite journal |title=Collective construction of numerical potential fields for the foraging problem |author=Simonin, Olivier and Charpillet, Francois and Thierry, Eric |year=2007 |journal=Research Report RR-6171, Inria-00143302v1}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''wavefront expansion algorithm''' is a specialized [[potential method|potential field]] path planner with [[breadth-first search]] to avoid local minima.<ref>{{cite arxiv |title=A Feedback Motion Plan for Vehicles with Bounded Curvature Constraints |author=Miraglia, Giovanni and Hook, IV |eprint=1910.06460 |year=2019|class=cs.RO }}</ref><ref>{{cite conference |title=Fast trajectory planning for multiple site surveillance through moving obstacles and wind |author=Soulignac, Michael and Taillibert, Patrick |conference=Proceedings of the Workshop of the UK Planning and Scheduling Special Interest Group |pages=25–33 |year=2006}}</ref> It uses a growing circle around the robot. The [[Nearest neighbor search|nearest neighbors]] are analyzed first and then the radius of the circle is extended to distant regions.<ref>{{cite journal |title=Collective construction of numerical potential fields for the foraging problem |author=Simonin, Olivier and Charpillet, Francois and Thierry, Eric |year=2007 |journal=Research Report RR-6171, Inria-00143302v1}}</ref></div></td>
</tr>
</table>Mike Peelhttps://en.wikipedia.org/w/index.php?title=Wavefront_expansion_algorithm&diff=1024546890&oldid=prevCitation bot: Alter: pages. Add: s2cid, class. Formatted dashes. | Use this bot. Report bugs. | Suggested by SemperIocundus | #UCB_webform2021-05-22T19:58:34Z<p>Alter: pages. Add: s2cid, class. Formatted <a href="/wiki/Wikipedia:ENDASH" class="mw-redirect" title="Wikipedia:ENDASH">dashes</a>. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by SemperIocundus | #UCB_webform</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:58, 22 May 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 4:</td>
<td colspan="2" class="diff-lineno">Line 4:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Commons category|Breadth-first search}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Commons category|Breadth-first search}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''wavefront expansion algorithm''' is a specialized [[potential method|potential field]] path planner with [[breadth-first search]] to avoid local minima.<ref>{{cite arxiv |title=A Feedback Motion Plan for Vehicles with Bounded Curvature Constraints |author=Miraglia, Giovanni and Hook, IV |eprint=1910.06460 |year=2019}}</ref><ref>{{cite conference |title=Fast trajectory planning for multiple site surveillance through moving obstacles and wind |author=Soulignac, Michael and Taillibert, Patrick |conference=Proceedings of the Workshop of the UK Planning and Scheduling Special Interest Group |pages=<del style="font-weight: bold; text-decoration: none;">25--33</del> |year=2006}}</ref> It uses a growing circle around the robot. The [[Nearest neighbor search|nearest neighbors]] are analyzed first and then the radius of the circle is extended to distant regions.<ref>{{cite journal |title=Collective construction of numerical potential fields for the foraging problem |author=Simonin, Olivier and Charpillet, Francois and Thierry, Eric |year=2007 |journal=Research Report RR-6171, Inria-00143302v1}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''wavefront expansion algorithm''' is a specialized [[potential method|potential field]] path planner with [[breadth-first search]] to avoid local minima.<ref>{{cite arxiv |title=A Feedback Motion Plan for Vehicles with Bounded Curvature Constraints |author=Miraglia, Giovanni and Hook, IV |eprint=1910.06460 |year=2019<ins style="font-weight: bold; text-decoration: none;">|class=cs.RO </ins>}}</ref><ref>{{cite conference |title=Fast trajectory planning for multiple site surveillance through moving obstacles and wind |author=Soulignac, Michael and Taillibert, Patrick |conference=Proceedings of the Workshop of the UK Planning and Scheduling Special Interest Group |pages=<ins style="font-weight: bold; text-decoration: none;">25–33</ins> |year=2006}}</ref> It uses a growing circle around the robot. The [[Nearest neighbor search|nearest neighbors]] are analyzed first and then the radius of the circle is extended to distant regions.<ref>{{cite journal |title=Collective construction of numerical potential fields for the foraging problem |author=Simonin, Olivier and Charpillet, Francois and Thierry, Eric |year=2007 |journal=Research Report RR-6171, Inria-00143302v1}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Motivation==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Motivation==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Before a robot is able to navigate a map it needs a plan.<ref>{{cite journal |doi=10.1163/156856306777924671 |year=2006 |publisher=Brill |volume=3 |number=3 |pages=285–306 |author=Chytra Pawashe and Metin Sitti |title=Two-dimensional vision-based autonomous microparticle manipulation using a nanoprobe |journal=Journal of Micromechatronics|url=https://semanticscholar.org/paper/f17c71933185cadfc3427200438bcbadc296830a }}</ref> The plan is a trajectory from start to goal and describes, for each moment in time and each position in the map, the robot's next action. [[Pathfinding|Path planning]] is solved by many different algorithms, which can be categorised as sampling-based and heuristics-based approaches.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Before a robot is able to navigate a map it needs a plan.<ref>{{cite journal |doi=10.1163/156856306777924671 |year=2006 |publisher=Brill |volume=3 |number=3 |pages=285–306 |author=Chytra Pawashe and Metin Sitti |title=Two-dimensional vision-based autonomous microparticle manipulation using a nanoprobe |journal=Journal of Micromechatronics<ins style="font-weight: bold; text-decoration: none;">|s2cid=18241136 </ins>|url=https://semanticscholar.org/paper/f17c71933185cadfc3427200438bcbadc296830a }}</ref> The plan is a trajectory from start to goal and describes, for each moment in time and each position in the map, the robot's next action. [[Pathfinding|Path planning]] is solved by many different algorithms, which can be categorised as sampling-based and heuristics-based approaches.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Before path planning, the map is [[Discretization|discretized]] into a grid. The vector information is converted into a 2D array and stored in memory. The potential field path planning algorithm determines the direction of the robot for each cell. This direction field is shown overlaid on the [[Robotic mapping|robotic map]] containing the robot and the obstacles. The question for the potential field algorithm is: which cell is labeled with which direction? This can be answered with a [[Motion_planning#Sampling-based_algorithms|sampling-based algorithm]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Before path planning, the map is [[Discretization|discretized]] into a grid. The vector information is converted into a 2D array and stored in memory. The potential field path planning algorithm determines the direction of the robot for each cell. This direction field is shown overlaid on the [[Robotic mapping|robotic map]] containing the robot and the obstacles. The question for the potential field algorithm is: which cell is labeled with which direction? This can be answered with a [[Motion_planning#Sampling-based_algorithms|sampling-based algorithm]].</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 14:</td>
<td colspan="2" class="diff-lineno">Line 14:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A sampling-based planner works by searching the graph. In the case of path planning, the graph contains the [[Spatial network|spatial nodes]] which can be observed by the robot. The wavefront expansion increases the performance of the search by analyzing only nodes near the robot. The decision is made on a geometrical level which is equal to breadth-first search.<ref>{{cite conference |doi=10.2514/6.2009-6113 |year=2009 |publisher=American Institute of Aeronautics and Astronautics |author=Anjan Chakrabarty and Jack Langelaan |title=Energy Maps for Long-Range Path Planning for Small- and Micro- UAVs |conference=AIAA Guidance, Navigation, and Control Conference }}</ref> That means, it uses metrics like distances from obstacles and [[Gradient method|gradient search]] for the path planning algorithm.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A sampling-based planner works by searching the graph. In the case of path planning, the graph contains the [[Spatial network|spatial nodes]] which can be observed by the robot. The wavefront expansion increases the performance of the search by analyzing only nodes near the robot. The decision is made on a geometrical level which is equal to breadth-first search.<ref>{{cite conference |doi=10.2514/6.2009-6113 |year=2009 |publisher=American Institute of Aeronautics and Astronautics |author=Anjan Chakrabarty and Jack Langelaan |title=Energy Maps for Long-Range Path Planning for Small- and Micro- UAVs |conference=AIAA Guidance, Navigation, and Control Conference }}</ref> That means, it uses metrics like distances from obstacles and [[Gradient method|gradient search]] for the path planning algorithm.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The algorithm includes a [[Loss function|cost function]] as an additional [[Heuristic (computer science)|heuristic]] for path planning.<ref>{{cite journal |doi=10.1109/tro.2010.2085790 |year=2011 |publisher=Institute of Electrical and Electronics Engineers (IEEE) |volume=27 |number=1 |pages=<del style="font-weight: bold; text-decoration: none;">89--98</del> |author=Michaël Soulignac |title=Feasible and Optimal Path Planning in Strong Current Fields |journal=IEEE Transactions on Robotics }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The algorithm includes a [[Loss function|cost function]] as an additional [[Heuristic (computer science)|heuristic]] for path planning.<ref>{{cite journal |doi=10.1109/tro.2010.2085790 |year=2011 |publisher=Institute of Electrical and Electronics Engineers (IEEE) |volume=27 |number=1 |pages=<ins style="font-weight: bold; text-decoration: none;">89–98</ins> |author=Michaël Soulignac |title=Feasible and Optimal Path Planning in Strong Current Fields |journal=IEEE Transactions on Robotics }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementation==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Implementation==</div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Wavefront_expansion_algorithm&diff=944190725&oldid=prev85.238.91.68: disambiguate potential field to potential method2020-03-06T07:55:08Z<p>disambiguate <a href="/wiki/Potential_field" class="mw-redirect" title="Potential field">potential field</a> to <a href="/wiki/Potential_method" title="Potential method">potential method</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:55, 6 March 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 4:</td>
<td colspan="2" class="diff-lineno">Line 4:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Commons category|Breadth-first search}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Commons category|Breadth-first search}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The '''wavefront expansion algorithm''' is a specialized [[potential field]]<del style="font-weight: bold; text-decoration: none;">{{dn|date=March 2020}}</del> path planner with [[breadth-first search]] to avoid local minima.<ref>{{cite arxiv |title=A Feedback Motion Plan for Vehicles with Bounded Curvature Constraints |author=Miraglia, Giovanni and Hook, IV |eprint=1910.06460 |year=2019}}</ref><ref>{{cite conference |title=Fast trajectory planning for multiple site surveillance through moving obstacles and wind |author=Soulignac, Michael and Taillibert, Patrick |conference=Proceedings of the Workshop of the UK Planning and Scheduling Special Interest Group |pages=25--33 |year=2006}}</ref> It uses a growing circle around the robot. The [[Nearest neighbor search|nearest neighbors]] are analyzed first and then the radius of the circle is extended to distant regions.<ref>{{cite journal |title=Collective construction of numerical potential fields for the foraging problem |author=Simonin, Olivier and Charpillet, Francois and Thierry, Eric |year=2007 |journal=Research Report RR-6171, Inria-00143302v1}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The '''wavefront expansion algorithm''' is a specialized [[<ins style="font-weight: bold; text-decoration: none;">potential method|</ins>potential field]] path planner with [[breadth-first search]] to avoid local minima.<ref>{{cite arxiv |title=A Feedback Motion Plan for Vehicles with Bounded Curvature Constraints |author=Miraglia, Giovanni and Hook, IV |eprint=1910.06460 |year=2019}}</ref><ref>{{cite conference |title=Fast trajectory planning for multiple site surveillance through moving obstacles and wind |author=Soulignac, Michael and Taillibert, Patrick |conference=Proceedings of the Workshop of the UK Planning and Scheduling Special Interest Group |pages=25--33 |year=2006}}</ref> It uses a growing circle around the robot. The [[Nearest neighbor search|nearest neighbors]] are analyzed first and then the radius of the circle is extended to distant regions.<ref>{{cite journal |title=Collective construction of numerical potential fields for the foraging problem |author=Simonin, Olivier and Charpillet, Francois and Thierry, Eric |year=2007 |journal=Research Report RR-6171, Inria-00143302v1}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Motivation==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Motivation==</div></td>
</tr>
</table>85.238.91.68