https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Wavelet_transform_modulus_maxima_method
Wavelet transform modulus maxima method - Revision history
2025-06-10T05:32:25Z
Revision history for this page on the wiki
MediaWiki 1.45.0-wmf.4
https://en.wikipedia.org/w/index.php?title=Wavelet_transform_modulus_maxima_method&diff=1237726041&oldid=prev
GreenC bot: Move 2 urls. Wayback Medic 2.5 per WP:URLREQ#ieee.org
2024-07-31T05:20:49Z
<p>Move 2 urls. <a href="/wiki/User:GreenC/WaybackMedic_2.5" title="User:GreenC/WaybackMedic 2.5">Wayback Medic 2.5</a> per <a href="/wiki/Wikipedia:URLREQ#ieee.org" class="mw-redirect" title="Wikipedia:URLREQ">WP:URLREQ#ieee.org</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:20, 31 July 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 40:</td>
<td colspan="2" class="diff-lineno">Line 40:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>At its essence, it is a combination of fractal dimension [[box counting]] methods and continuous wavelet transforms, where wavelets at various scales are used instead of boxes.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>At its essence, it is a combination of fractal dimension [[box counting]] methods and continuous wavelet transforms, where wavelets at various scales are used instead of boxes.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>WTMM was originally developed by Mallat and Hwang in 1992 and used for image processing [<del style="font-weight: bold; text-decoration: none;">http</del>://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]. {{Disputed|Original work by Muzy, Bacry, and Arneodo [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1] pre-dates Mallat's and Hwang's|date=January 2023}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>WTMM was originally developed by Mallat and Hwang in 1992 and used for image processing [<ins style="font-weight: bold; text-decoration: none;">https</ins>://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]. {{Disputed|Original work by Muzy, Bacry, and Arneodo [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1] pre-dates Mallat's and Hwang's|date=January 2023}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Bacry, Muzy, and Arneodo were early users of this methodology. [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1][http://pre.aps.org/abstract/PRE/v47/i2/p875_1] It has subsequently been used in fields related to signal processing.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Bacry, Muzy, and Arneodo were early users of this methodology. [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1][http://pre.aps.org/abstract/PRE/v47/i2/p875_1] It has subsequently been used in fields related to signal processing.</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 48:</td>
<td colspan="2" class="diff-lineno">Line 48:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Alain Arneodo et al. (2008), [[Scholarpedia]], 3(3):4103. [http://www.scholarpedia.org/article/Wavelet-based_multifractal_analysis]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Alain Arneodo et al. (2008), [[Scholarpedia]], 3(3):4103. [http://www.scholarpedia.org/article/Wavelet-based_multifractal_analysis]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* ''A Wavelet Tour of Signal Processing'', by Stéphane Mallat; {{isbn|012466606X}}; Academic Press, 1999 [http://www.ceremade.dauphine.fr/~peyre/wavelet-tour/]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* ''A Wavelet Tour of Signal Processing'', by Stéphane Mallat; {{isbn|012466606X}}; Academic Press, 1999 [http://www.ceremade.dauphine.fr/~peyre/wavelet-tour/]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Mallat, S.; Hwang, W.L.;, "Singularity detection and processing with wavelets," ''IEEE Transactions on Information Theory'', volume 38, number 2, pages 617–643, Mar 1992 {{doi|10.1109/18.119727}} [<del style="font-weight: bold; text-decoration: none;">http</del>://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Mallat, S.; Hwang, W.L.;, "Singularity detection and processing with wavelets," ''IEEE Transactions on Information Theory'', volume 38, number 2, pages 617–643, Mar 1992 {{doi|10.1109/18.119727}} [<ins style="font-weight: bold; text-decoration: none;">https</ins>://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Arneodo on Wavelets [http://www.iscpif.fr/tiki-index.php?page=CSSS'08+Arneodo&highlight=towards]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Arneodo on Wavelets [http://www.iscpif.fr/tiki-index.php?page=CSSS'08+Arneodo&highlight=towards]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | last=Muzy | first=J. F. | last2=Bacry | first2=E. | last3=Arneodo | first3=A. | title=Wavelets and multifractal formalism for singular signals: Application to turbulence data | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=67 | issue=25 | date=1991-12-16 | issn=0031-9007 | doi=10.1103/physrevlett.67.3515 | pmid=10044755 | bibcode=1991PhRvL..67.3515M | pages=3515–3518}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | last=Muzy | first=J. F. | last2=Bacry | first2=E. | last3=Arneodo | first3=A. | title=Wavelets and multifractal formalism for singular signals: Application to turbulence data | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=67 | issue=25 | date=1991-12-16 | issn=0031-9007 | doi=10.1103/physrevlett.67.3515 | pmid=10044755 | bibcode=1991PhRvL..67.3515M | pages=3515–3518}}</div></td>
</tr>
</table>
GreenC bot
https://en.wikipedia.org/w/index.php?title=Wavelet_transform_modulus_maxima_method&diff=1132542199&oldid=prev
AnomieBOT: Dating maintenance tags: {{Disputed}}
2023-01-09T10:32:20Z
<p>Dating maintenance tags: {{Disputed}}</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:32, 9 January 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 40:</td>
<td colspan="2" class="diff-lineno">Line 40:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>At its essence, it is a combination of fractal dimension [[box counting]] methods and continuous wavelet transforms, where wavelets at various scales are used instead of boxes.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>At its essence, it is a combination of fractal dimension [[box counting]] methods and continuous wavelet transforms, where wavelets at various scales are used instead of boxes.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>WTMM was originally developed by Mallat and Hwang in 1992 and used for image processing [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]. {{Disputed|Original work by Muzy, Bacry, and Arneodo [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1] pre-dates Mallat's and Hwang's|<del style="font-weight: bold; text-decoration: none;">Date</del>=January 2023}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>WTMM was originally developed by Mallat and Hwang in 1992 and used for image processing [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]. {{Disputed|Original work by Muzy, Bacry, and Arneodo [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1] pre-dates Mallat's and Hwang's|<ins style="font-weight: bold; text-decoration: none;">date</ins>=January 2023}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Bacry, Muzy, and Arneodo were early users of this methodology. [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1][http://pre.aps.org/abstract/PRE/v47/i2/p875_1] It has subsequently been used in fields related to signal processing.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Bacry, Muzy, and Arneodo were early users of this methodology. [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1][http://pre.aps.org/abstract/PRE/v47/i2/p875_1] It has subsequently been used in fields related to signal processing.</div></td>
</tr>
</table>
AnomieBOT
https://en.wikipedia.org/w/index.php?title=Wavelet_transform_modulus_maxima_method&diff=1132528612&oldid=prev
RydinG: /* History */ Statement regarding original work by Mallat and Hwang from 1992 is disputed given the existence of a prior work by Muzy et al from 1991.
2023-01-09T08:31:19Z
<p><span class="autocomment">History: </span> Statement regarding original work by Mallat and Hwang from 1992 is disputed given the existence of a prior work by Muzy et al from 1991.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:31, 9 January 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 38:</td>
<td colspan="2" class="diff-lineno">Line 38:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The WTMM was developed out of the larger field of continuous wavelet transforms, which arose in the 1980s, and its contemporary fractal dimension methods.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The WTMM was developed out of the larger field of continuous wavelet transforms, which arose in the 1980s, and its contemporary fractal dimension methods.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>At its essence, it is a combination of fractal dimension <del style="font-weight: bold; text-decoration: none;">"</del>box counting<del style="font-weight: bold; text-decoration: none;">"</del> methods and continuous wavelet transforms, where wavelets at various scales are used instead of boxes.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>At its essence, it is a combination of fractal dimension <ins style="font-weight: bold; text-decoration: none;">[[</ins>box counting<ins style="font-weight: bold; text-decoration: none;">]]</ins> methods and continuous wavelet transforms, where wavelets at various scales are used instead of boxes.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>WTMM was originally developed by Mallat and Hwang in 1992 and used for image processing<del style="font-weight: bold; text-decoration: none;">.</del> [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>WTMM was originally developed by Mallat and Hwang in 1992 and used for image processing [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]<ins style="font-weight: bold; text-decoration: none;">. {{Disputed|Original work by Muzy, Bacry, and Arneodo [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1] pre-dates Mallat's and Hwang's|Date=January 2023}}</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Bacry, Muzy, and Arneodo were early users of this methodology. [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1][http://pre.aps.org/abstract/PRE/v47/i2/p875_1] It has subsequently been used in fields related to signal processing.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Bacry, Muzy, and Arneodo were early users of this methodology. [http://prl.aps.org/abstract/PRL/v67/i25/p3515_1][http://pre.aps.org/abstract/PRE/v47/i2/p875_1] It has subsequently been used in fields related to signal processing.</div></td>
</tr>
</table>
RydinG
https://en.wikipedia.org/w/index.php?title=Wavelet_transform_modulus_maxima_method&diff=1070706441&oldid=prev
Qwerfjkl (bot): Capitalising short description "method for detecting a signal's fractal dimension" per WP:SDFORMAT (via Bandersnatch)
2022-02-08T21:10:42Z
<p>Capitalising short description "method for detecting a signal's fractal dimension" per <a href="/wiki/Wikipedia:SDFORMAT" class="mw-redirect" title="Wikipedia:SDFORMAT">WP:SDFORMAT</a> (via <a href="https://de.wikipedia.org/wiki/Benutzer:Schnark/js/bandersnatch" class="extiw" title="de:Benutzer:Schnark/js/bandersnatch">Bandersnatch</a>)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:10, 8 February 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|<del style="font-weight: bold; text-decoration: none;">method</del> for detecting a signal's fractal dimension}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|<ins style="font-weight: bold; text-decoration: none;">Method</ins> for detecting a signal's fractal dimension}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''wavelet transform modulus maxima (WTMM)''' is a method for detecting the [[fractal dimension]] of a signal.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''wavelet transform modulus maxima (WTMM)''' is a method for detecting the [[fractal dimension]] of a signal.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
Qwerfjkl (bot)
https://en.wikipedia.org/w/index.php?title=Wavelet_transform_modulus_maxima_method&diff=1068880238&oldid=prev
Cherno More at 16:25, 30 January 2022
2022-01-30T16:25:36Z
<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:25, 30 January 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 14:</td>
<td colspan="2" class="diff-lineno">Line 14:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>f(t) = a_0 + a_1 (t - t_i) + a_2(t - t_i)^2 + \cdots + a_h(t - t_i)^{h_i} \, </math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>f(t) = a_0 + a_1 (t - t_i) + a_2(t - t_i)^2 + \cdots + a_h(t - t_i)^{h_i} \, </math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where <math> t </math> is close to <math> t_i </math> and <math> h_i </math> is a non-integer quantifying the local singularity.<del style="font-weight: bold; text-decoration: none;"> </del> (Compare this to a [[Taylor series]], where in practice only a limited number of low-order terms are used to approximate a continuous function.)</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where <math> t </math> is close to <math> t_i </math> and <math> h_i </math> is a non-integer quantifying the local singularity. (Compare this to a [[Taylor series]], where in practice only a limited number of low-order terms are used to approximate a continuous function.)</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Generally, a [[continuous wavelet transform]] decomposes a signal as a function of time, rather than assuming the signal is stationary (For example, the Fourier transform).<del style="font-weight: bold; text-decoration: none;"> </del> Any continuous wavelet can be used, though the first derivative of the [[Gaussian distribution]] and the [[Mexican hat wavelet]] (2nd derivative of Gaussian) are common.<del style="font-weight: bold; text-decoration: none;"> </del> Choice of wavelet may depend on characteristics of the signal being investigated.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Generally, a [[continuous wavelet transform]] decomposes a signal as a function of time, rather than assuming the signal is stationary (For example, the Fourier transform). Any continuous wavelet can be used, though the first derivative of the [[Gaussian distribution]] and the [[Mexican hat wavelet]] (2nd derivative of Gaussian) are common. Choice of wavelet may depend on characteristics of the signal being investigated.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Below we see one possible wavelet basis given by the first derivative of the Gaussian:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Below we see one possible wavelet basis given by the first derivative of the Gaussian:</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 22:</td>
<td colspan="2" class="diff-lineno">Line 22:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>G' (t,a,b) = \frac{a}{(2\pi)^{-1/2}}(t - b) e^{\left(\frac{-(t-b)^2}{2a^2}\right)} \,</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>G' (t,a,b) = \frac{a}{(2\pi)^{-1/2}}(t - b) e^{\left(\frac{-(t-b)^2}{2a^2}\right)} \,</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Once a "mother wavelet" is chosen, the continuous wavelet transform is carried out as a continuous, [[square-integrable function]] that can be scaled and translated.<del style="font-weight: bold; text-decoration: none;"> </del> Let <math>a > 0</math> be the scaling constant and <math>b\in\mathbb{R}</math> be the translation of the wavelet along the signal:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Once a "mother wavelet" is chosen, the continuous wavelet transform is carried out as a continuous, [[square-integrable function]] that can be scaled and translated. Let <math>a > 0</math> be the scaling constant and <math>b\in\mathbb{R}</math> be the translation of the wavelet along the signal:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>X_w(a,b)=\frac{1}{\sqrt{a}} \int_{-\infty}^\infty x(t)\psi^\ast \left(\frac{t-b}{a}\right)\, dt</math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: <math>X_w(a,b)=\frac{1}{\sqrt{a}} \int_{-\infty}^\infty x(t)\psi^\ast \left(\frac{t-b}{a}\right)\, dt</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>where <math>\psi(t)</math><del style="font-weight: bold; text-decoration: none;"> </del> is a continuous function in both the time domain and the frequency domain called the mother wavelet and <math>^{\ast}</math> represents the operation of [[complex conjugate]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>where <math>\psi(t)</math> is a continuous function in both the time domain and the frequency domain called the mother wavelet and <math>^{\ast}</math> represents the operation of [[complex conjugate]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>By calculating <math>X_w(a,b) </math> for subsequent wavelets that are derivatives of the mother wavelet, singularities can be identified.<del style="font-weight: bold; text-decoration: none;"> </del> Successive derivative wavelets remove the contribution of lower order terms in the signal, allowing the maximum <math>h_i</math> to be detected.<del style="font-weight: bold; text-decoration: none;"> </del> (Recall that when taking derivatives, lower order terms become 0.)<del style="font-weight: bold; text-decoration: none;"> </del> This is the "modulus maxima".</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>By calculating <math>X_w(a,b) </math> for subsequent wavelets that are derivatives of the mother wavelet, singularities can be identified. Successive derivative wavelets remove the contribution of lower order terms in the signal, allowing the maximum <math>h_i</math> to be detected. (Recall that when taking derivatives, lower order terms become 0.) This is the "modulus maxima".</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Thus, this method identifies the singularity spectrum by convolving the signal with a wavelet at different scales and time offsets.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Thus, this method identifies the singularity spectrum by convolving the signal with a wavelet at different scales and time offsets.</div></td>
</tr>
</table>
Cherno More
https://en.wikipedia.org/w/index.php?title=Wavelet_transform_modulus_maxima_method&diff=1012638658&oldid=prev
Shd33: removed repetition
2021-03-17T14:08:43Z
<p>removed repetition</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:08, 17 March 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 4:</td>
<td colspan="2" class="diff-lineno">Line 4:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than this, the WTMM is capable of partitioning the time and scale domain of a signal into fractal dimension regions, and the method is sometimes referred to as a "mathematical microscope" due to its ability to inspect the multi-scale dimensional characteristics of a signal and possibly inform about the sources of these characteristics.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>More than this, the WTMM is capable of partitioning the time and scale domain of a signal into fractal dimension regions, and the method is sometimes referred to as a "mathematical microscope" due to its ability to inspect the multi-scale dimensional characteristics of a signal and possibly inform about the sources of these characteristics.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The WTMM method uses [[continuous wavelet transform]] rather than [[Fourier transform]]s to detect<del style="font-weight: bold; text-decoration: none;"> singularities</del> [[Mathematical singularity|<del style="font-weight: bold; text-decoration: none;">singularity</del>]] – that is discontinuities, areas in the signal that are not continuous at a particular derivative.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The WTMM method uses [[continuous wavelet transform]] rather than [[Fourier transform]]s to detect [[Mathematical singularity|<ins style="font-weight: bold; text-decoration: none;">singularities</ins>]] – that is discontinuities, areas in the signal that are not continuous at a particular derivative.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In particular, this method is useful when analyzing [[multifractal]] signals, that is, signals having multiple fractal dimensions.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In particular, this method is useful when analyzing [[multifractal]] signals, that is, signals having multiple fractal dimensions.</div></td>
</tr>
</table>
Shd33
https://en.wikipedia.org/w/index.php?title=Wavelet_transform_modulus_maxima_method&diff=943598708&oldid=prev
Citation bot: Add: url, bibcode, pmid. | You can use this bot yourself. Report bugs here. | Activated by User:AManWithNoPlan | via #UCB_webform
2020-03-02T20:25:27Z
<p>Add: url, bibcode, pmid. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | Activated by <a href="/wiki/User:AManWithNoPlan" title="User:AManWithNoPlan">User:AManWithNoPlan</a> | via #UCB_webform</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:25, 2 March 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 50:</td>
<td colspan="2" class="diff-lineno">Line 50:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Mallat, S.; Hwang, W.L.;, "Singularity detection and processing with wavelets," ''IEEE Transactions on Information Theory'', volume 38, number 2, pages 617–643, Mar 1992 {{doi|10.1109/18.119727}} [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Mallat, S.; Hwang, W.L.;, "Singularity detection and processing with wavelets," ''IEEE Transactions on Information Theory'', volume 38, number 2, pages 617–643, Mar 1992 {{doi|10.1109/18.119727}} [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Arneodo on Wavelets [http://www.iscpif.fr/tiki-index.php?page=CSSS'08+Arneodo&highlight=towards]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Arneodo on Wavelets [http://www.iscpif.fr/tiki-index.php?page=CSSS'08+Arneodo&highlight=towards]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | last=Muzy | first=J. F. | last2=Bacry | first2=E. | last3=Arneodo | first3=A. | title=Wavelets and multifractal formalism for singular signals: Application to turbulence data | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=67 | issue=25 | date=1991-12-16 | issn=0031-9007 | doi=10.1103/physrevlett.67.3515 | pages=3515–3518}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | last=Muzy | first=J. F. | last2=Bacry | first2=E. | last3=Arneodo | first3=A. | title=Wavelets and multifractal formalism for singular signals: Application to turbulence data | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=67 | issue=25 | date=1991-12-16 | issn=0031-9007 | doi=10.1103/physrevlett.67.3515<ins style="font-weight: bold; text-decoration: none;"> | pmid=10044755 | bibcode=1991PhRvL..67.3515M</ins> | pages=3515–3518}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | last=Muzy | first=J. F. | last2=Bacry | first2=E. | last3=Arneodo | first3=A. | title=Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method | journal=Physical Review E | publisher=American Physical Society (APS) | volume=47 | issue=2 | date=1993-02-01 | issn=1063-651X | doi=10.1103/physreve.47.875 | pages=875–884}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | last=Muzy | first=J. F. | last2=Bacry | first2=E. | last3=Arneodo | first3=A. | title=Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method | journal=Physical Review E | publisher=American Physical Society (APS) | volume=47 | issue=2 | date=1993-02-01 | issn=1063-651X | doi=10.1103/physreve.47.875<ins style="font-weight: bold; text-decoration: none;"> | pmid=9960082 | bibcode=1993PhRvE..47..875M</ins> | pages=875–884<ins style="font-weight: bold; text-decoration: none;">| url=https://hal.archives-ouvertes.fr/hal-01557138/file/MBA.pdf </ins>}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Wavelets]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Wavelets]]</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=Wavelet_transform_modulus_maxima_method&diff=935852269&oldid=prev
Forbes72: /* References */ improve existing refs
2020-01-15T03:58:52Z
<p><span class="autocomment">References: </span> improve existing refs</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:58, 15 January 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 50:</td>
<td colspan="2" class="diff-lineno">Line 50:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Mallat, S.; Hwang, W.L.;, "Singularity detection and processing with wavelets," ''IEEE Transactions on Information Theory'', volume 38, number 2, pages 617–643, Mar 1992 {{doi|10.1109/18.119727}} [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Mallat, S.; Hwang, W.L.;, "Singularity detection and processing with wavelets," ''IEEE Transactions on Information Theory'', volume 38, number 2, pages 617–643, Mar 1992 {{doi|10.1109/18.119727}} [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119727&isnumber=3425]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Arneodo on Wavelets [http://www.iscpif.fr/tiki-index.php?page=CSSS'08+Arneodo&highlight=towards]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Arneodo on Wavelets [http://www.iscpif.fr/tiki-index.php?page=CSSS'08+Arneodo&highlight=towards]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* <del style="font-weight: bold; text-decoration: none;">"</del>Wavelets and multifractal formalism for singular signals<del style="font-weight: bold; text-decoration: none;"> </del>: <del style="font-weight: bold; text-decoration: none;">application</del> to turbulence data<del style="font-weight: bold; text-decoration: none;">",</del> <del style="font-weight: bold; text-decoration: none;">J.F.</del> <del style="font-weight: bold; text-decoration: none;">Muzy,</del> <del style="font-weight: bold; text-decoration: none;">E.</del> <del style="font-weight: bold; text-decoration: none;">Bacry</del> <del style="font-weight: bold; text-decoration: none;">and</del> <del style="font-weight: bold; text-decoration: none;">A. Arneodo,</del> <del style="font-weight: bold; text-decoration: none;">''</del>Physical <del style="font-weight: bold; text-decoration: none;">Review</del> <del style="font-weight: bold; text-decoration: none;">Letters''</del> 67<del style="font-weight: bold; text-decoration: none;">,</del> <del style="font-weight: bold; text-decoration: none;">3515</del> <del style="font-weight: bold; text-decoration: none;">(</del>1991<del style="font-weight: bold; text-decoration: none;">).</del> <del style="font-weight: bold; text-decoration: none;">[http:</del>/<del style="font-weight: bold; text-decoration: none;">/prl</del>.<del style="font-weight: bold; text-decoration: none;">aps</del>.<del style="font-weight: bold; text-decoration: none;">org/abstract/PRL/v67/i25/p3515_1]</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* <ins style="font-weight: bold; text-decoration: none;">{{cite journal | last=Muzy | first=J. F. | last2=Bacry | first2=E. | last3=Arneodo | first3=A. | title=</ins>Wavelets and multifractal formalism for singular signals: <ins style="font-weight: bold; text-decoration: none;">Application</ins> to turbulence data <ins style="font-weight: bold; text-decoration: none;">|</ins> <ins style="font-weight: bold; text-decoration: none;">journal=Physical</ins> <ins style="font-weight: bold; text-decoration: none;">Review</ins> <ins style="font-weight: bold; text-decoration: none;">Letters</ins> <ins style="font-weight: bold; text-decoration: none;">|</ins> <ins style="font-weight: bold; text-decoration: none;">publisher=American</ins> Physical <ins style="font-weight: bold; text-decoration: none;">Society</ins> <ins style="font-weight: bold; text-decoration: none;">(APS)</ins> <ins style="font-weight: bold; text-decoration: none;">| volume=</ins>67 <ins style="font-weight: bold; text-decoration: none;">|</ins> <ins style="font-weight: bold; text-decoration: none;">issue=25 | date=</ins>1991<ins style="font-weight: bold; text-decoration: none;">-12-16</ins> <ins style="font-weight: bold; text-decoration: none;">| issn=0031-9007 | doi=10.1103</ins>/<ins style="font-weight: bold; text-decoration: none;">physrevlett</ins>.<ins style="font-weight: bold; text-decoration: none;">67</ins>.<ins style="font-weight: bold; text-decoration: none;">3515 | pages=3515–3518}}</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* <del style="font-weight: bold; text-decoration: none;">"</del>Multifractal formalism for fractal signals: <del style="font-weight: bold; text-decoration: none;">the</del> structure<del style="font-weight: bold; text-decoration: none;"> </del>function approach versus the wavelet<del style="font-weight: bold; text-decoration: none;"> </del>transform modulus<del style="font-weight: bold; text-decoration: none;"> </del>maxima method<del style="font-weight: bold; text-decoration: none;">",</del> <del style="font-weight: bold; text-decoration: none;">J.F.</del> <del style="font-weight: bold; text-decoration: none;">Muzy,</del> E<del style="font-weight: bold; text-decoration: none;">.</del> <del style="font-weight: bold; text-decoration: none;">Bacry</del> <del style="font-weight: bold; text-decoration: none;">and</del> <del style="font-weight: bold; text-decoration: none;">A.</del> <del style="font-weight: bold; text-decoration: none;">Arneodo,</del> <del style="font-weight: bold; text-decoration: none;">''Phys.</del> <del style="font-weight: bold; text-decoration: none;">Rev. E''</del> 47<del style="font-weight: bold; text-decoration: none;">,</del> <del style="font-weight: bold; text-decoration: none;">875</del> <del style="font-weight: bold; text-decoration: none;">[http:</del>/<del style="font-weight: bold; text-decoration: none;">/pre</del>.<del style="font-weight: bold; text-decoration: none;">aps</del>.<del style="font-weight: bold; text-decoration: none;">org/abstract/PRE/v47/i2/p875_1]</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* <ins style="font-weight: bold; text-decoration: none;">{{cite journal | last=Muzy | first=J. F. | last2=Bacry | first2=E. | last3=Arneodo | first3=A. | title=</ins>Multifractal formalism for fractal signals: <ins style="font-weight: bold; text-decoration: none;">The</ins> structure<ins style="font-weight: bold; text-decoration: none;">-</ins>function approach versus the wavelet<ins style="font-weight: bold; text-decoration: none;">-</ins>transform modulus<ins style="font-weight: bold; text-decoration: none;">-</ins>maxima method <ins style="font-weight: bold; text-decoration: none;">|</ins> <ins style="font-weight: bold; text-decoration: none;">journal=Physical Review</ins> E <ins style="font-weight: bold; text-decoration: none;">|</ins> <ins style="font-weight: bold; text-decoration: none;">publisher=American</ins> <ins style="font-weight: bold; text-decoration: none;">Physical</ins> <ins style="font-weight: bold; text-decoration: none;">Society</ins> <ins style="font-weight: bold; text-decoration: none;">(APS)</ins> <ins style="font-weight: bold; text-decoration: none;">|</ins> <ins style="font-weight: bold; text-decoration: none;">volume=</ins>47 <ins style="font-weight: bold; text-decoration: none;">|</ins> <ins style="font-weight: bold; text-decoration: none;">issue=2 | date=1993-02-01 | issn=1063-651X | doi=10.1103</ins>/<ins style="font-weight: bold; text-decoration: none;">physreve</ins>.<ins style="font-weight: bold; text-decoration: none;">47</ins>.<ins style="font-weight: bold; text-decoration: none;">875 | pages=875–884}}</ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Wavelets]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Wavelets]]</div></td>
</tr>
</table>
Forbes72
https://en.wikipedia.org/w/index.php?title=Wavelet_transform_modulus_maxima_method&diff=921979305&oldid=prev
Daviddwd: short description
2019-10-19T03:02:49Z
<p>short description</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:02, 19 October 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|method for detecting a signal's fractal dimension}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''wavelet transform modulus maxima (WTMM)''' is a method for detecting the [[fractal dimension]] of a signal.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''wavelet transform modulus maxima (WTMM)''' is a method for detecting the [[fractal dimension]] of a signal.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
Daviddwd
https://en.wikipedia.org/w/index.php?title=Wavelet_transform_modulus_maxima_method&diff=915649712&oldid=prev
Chongkian: /* References */
2019-09-14T14:03:22Z
<p><span class="autocomment">References</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:03, 14 September 2019</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 52:</td>
<td colspan="2" class="diff-lineno">Line 52:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* "Multifractal formalism for fractal signals: the structure function approach versus the wavelet transform modulus maxima method", J.F. Muzy, E. Bacry and A. Arneodo, ''Phys. Rev. E'' 47, 875 [http://pre.aps.org/abstract/PRE/v47/i2/p875_1]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* "Multifractal formalism for fractal signals: the structure function approach versus the wavelet transform modulus maxima method", J.F. Muzy, E. Bacry and A. Arneodo, ''Phys. Rev. E'' 47, 875 [http://pre.aps.org/abstract/PRE/v47/i2/p875_1]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Wavelets<del style="font-weight: bold; text-decoration: none;">| </del>]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Wavelets]]</div></td>
</tr>
</table>
Chongkian