Content deleted Content added
m link data communication |
m Open access bot: url-access updated in citation with #oabot. |
||
Line 42:
[[Optical cavity|Resonator]]s are especially useful in photonic logic, since they allow a build-up of energy from [[constructive interference]], thus enhancing optical nonlinear effects.
Other approaches that have been investigated include photonic logic at a [[Nanotechnology|molecular level]], using [[Photoluminescence|photoluminescent]] chemicals. In a demonstration, Witlicki et al. performed logical operations using molecules and [[surface enhanced Raman spectroscopy|SERS]].<ref>{{cite journal | title = Molecular Logic Gates Using Surface-Enhanced Raman-Scattered Light | first9 = Amar H. | last9 = Flood | first8 = Lasse | last8 = Jensen | first7 = Eric W. | last7 = Wong | first6 = Jan O. | last6 = Jeppesen | first5 = Vincent J. | last5 = Bottomley | first4 = Daniel W. | last4 = Silverstein | first3 = Stinne W. | last3 = Hansen | journal = [[J. Am. Chem. Soc.]] | first2 = Carsten | date = 2011 | volume = 133 | issue = 19 | last2 = Johnsen | pages = 7288–91 | doi = 10.1021/ja200992x | pmid = 21510609 | first1 = Edward H. | last1 = Witlicki | bibcode = 2011JAChS.133.7288W | url = https://figshare.com/articles/Molecular_Logic_Gates_Using_Surface_Enhanced_Raman_Scattered_Light/2651761 | url-access = subscription }}</ref>
==Unconventional approaches==
|