Jump to content

BCJR algorithm: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Added section needs expansion. Added a few links. Inserted comma.
→cite journal | Alter: date. Add: doi-access, bibcode, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this tool. Report bugs. | #UCB_Gadget
Line 1: Line 1:
{{short description|Error correction algorithm}}
{{short description|Error correction algorithm}}
The '''BCJR algorithm''' is an [[algorithm]] for [[maximum a posteriori]] decoding of [[error correcting code]]s defined on trellises (principally [[convolutional code]]s). The algorithm is named after its inventors: Bahl, Cocke, [[Frederick Jelinek|Jelinek]] and Raviv.<ref name="bcjr">L.Bahl, J.Cocke, F.Jelinek, and J.Raviv, "Optimal Decoding of Linear Codes for minimizing symbol error rate", IEEE Transactions on Information Theory, vol. IT-20(2), pp. 284-287, March 1974.</ref> This algorithm is critical to modern iteratively-decoded error-correcting codes, including [[turbo code]]s and [[low-density parity-check code]]s.
The '''BCJR algorithm''' is an [[algorithm]] for [[maximum a posteriori]] decoding of [[error correcting code]]s defined on trellises (principally [[convolutional code]]s). The algorithm is named after its inventors: Bahl, Cocke, [[Frederick Jelinek|Jelinek]] and Raviv.<ref name="bcjr">{{cite journal |first1=L. |last1=Bahl |first2=J. |last2=Cocke |first3=F. |last3=Jelinek |first4=J. |last4=Raviv |title=Optimal Decoding of Linear Codes for minimizing symbol error rate |journal=IEEE Transactions on Information Theory |volume=20 |issue=2 |pages=284–7 |date=March 1974 |doi=10.1109/TIT.1974.1055186 }}</ref> This algorithm is critical to modern iteratively-decoded error-correcting codes, including [[turbo code]]s and [[low-density parity-check code]]s.


==Steps involved==
==Steps involved==
Line 12: Line 12:


===SBGT BCJR===
===SBGT BCJR===
Berrou, Glavieux and Thitimajshima simplification.<ref>Sichun Wang and François Patenaude, "A Systematic Approach to Modified BCJR MAP Algorithms for Convolutional Codes," ''EURASIP Journal on Applied Signal Processing'', vol. 2006, Article ID 95360, 15 pages, 2006. {{doi|10.1155/ASP/2006/95360}}</ref>
Berrou, Glavieux and Thitimajshima simplification.<ref>{{cite journal |first1=Sichun |last1=Wang |first2=François |last2=Patenaude |title=A Systematic Approach to Modified BCJR MAP Algorithms for Convolutional Codes |journal=EURASIP Journal on Applied Signal Processing |volume=2006 |issue= |pages=95360 |date= 2006|doi=10.1155/ASP/2006/95360 |bibcode=2006EJASP2006..242W |doi-access=free }}</ref>


===Log-Map BCJR===
===Log-Map BCJR===
{{Expand section|date=September 2022}}
{{Expand section|date=September 2022}}
<ref>P. Robertson, P. Hoeher and E. Villebrun, "Optimal and Sub-Optimal Maximum A Posteriori Algorithms Suitable for Turbo Decoding", European Transactions on Telecommunications, Vol. 8, 1997.
<ref>{{cite journal |first1=P. |last1=Robertson |first2=P. |last2=Hoeher |first3=E. |last3=Villebrun |title=Optimal and Sub-Optimal Maximum A Posteriori Algorithms Suitable for Turbo Decoding |journal=European Transactions on Telecommunications |volume=8 |issue=2 |pages=119–125 |date=1997 |doi=10.1002/ett.4460080202 }}
</ref>
</ref>



Revision as of 08:47, 23 September 2023

The BCJR algorithm is an algorithm for maximum a posteriori decoding of error correcting codes defined on trellises (principally convolutional codes). The algorithm is named after its inventors: Bahl, Cocke, Jelinek and Raviv.[1] This algorithm is critical to modern iteratively-decoded error-correcting codes, including turbo codes and low-density parity-check codes.

Steps involved

Based on the trellis:

Variations

SBGT BCJR

Berrou, Glavieux and Thitimajshima simplification.[2]

Log-Map BCJR

[3]

Implementations

See also

References

  1. ^ Bahl, L.; Cocke, J.; Jelinek, F.; Raviv, J. (March 1974). "Optimal Decoding of Linear Codes for minimizing symbol error rate". IEEE Transactions on Information Theory. 20 (2): 284–7. doi:10.1109/TIT.1974.1055186.
  2. ^ Wang, Sichun; Patenaude, François (2006). "A Systematic Approach to Modified BCJR MAP Algorithms for Convolutional Codes". EURASIP Journal on Applied Signal Processing. 2006: 95360. Bibcode:2006EJASP2006..242W. doi:10.1155/ASP/2006/95360.
  3. ^ Robertson, P.; Hoeher, P.; Villebrun, E. (1997). "Optimal and Sub-Optimal Maximum A Posteriori Algorithms Suitable for Turbo Decoding". European Transactions on Telecommunications. 8 (2): 119–125. doi:10.1002/ett.4460080202.