Jump to content

BCJR algorithm: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi updated in citation with #oabot.
Added full name and trellis link
 
Line 1: Line 1:
{{short description|Error correction algorithm}}
{{short description|Error correction algorithm}}
The '''BCJR algorithm''' is an [[algorithm]] for [[maximum a posteriori]] decoding of [[error correcting code]]s defined on trellises (principally [[convolutional code]]s). The algorithm is named after its inventors: Bahl, Cocke, [[Frederick Jelinek|Jelinek]] and Raviv.<ref name="bcjr">{{cite journal |first1=L. |last1=Bahl |first2=J. |last2=Cocke |first3=F. |last3=Jelinek |first4=J. |last4=Raviv |title=Optimal Decoding of Linear Codes for minimizing symbol error rate |journal=IEEE Transactions on Information Theory |volume=20 |issue=2 |pages=284–7 |date=March 1974 |doi=10.1109/TIT.1974.1055186 }}</ref> This algorithm is critical to modern iteratively-decoded error-correcting codes, including [[turbo code]]s and [[low-density parity-check code]]s.
The '''Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm''' is an [[algorithm]] for [[maximum a posteriori]] decoding of [[error correcting code]]s defined on [[Trellis_(graph)|trellises]] (principally [[convolutional code]]s). The algorithm is named after its inventors: Bahl, Cocke, [[Frederick Jelinek|Jelinek]] and Raviv.<ref name="bcjr">{{cite journal |first1=L. |last1=Bahl |first2=J. |last2=Cocke |first3=F. |last3=Jelinek |first4=J. |last4=Raviv |title=Optimal Decoding of Linear Codes for minimizing symbol error rate |journal=IEEE Transactions on Information Theory |volume=20 |issue=2 |pages=284–7 |date=March 1974 |doi=10.1109/TIT.1974.1055186 }}</ref> This algorithm is critical to modern iteratively-decoded error-correcting codes, including [[turbo codes]] and [[low-density parity-check codes]].


==Steps involved==
==Steps involved==
Line 12: Line 12:


===SBGT BCJR===
===SBGT BCJR===
Berrou, Glavieux and Thitimajshima simplification.<ref>{{cite journal |first1=Sichun |last1=Wang |first2=François |last2=Patenaude |title=A Systematic Approach to Modified BCJR MAP Algorithms for Convolutional Codes |journal=EURASIP Journal on Applied Signal Processing |volume=2006 |issue= |pages=95360 |date= 2006|doi=10.1155/ASP/2006/95360 |bibcode=2006EJASP2006..242W |doi-access=free }}</ref>
Berrou, Glavieux and Thitimajshima simplification.<ref name="sichun2006">{{cite journal |first1=Sichun |last1=Wang |first2=François |last2=Patenaude |title=A Systematic Approach to Modified BCJR MAP Algorithms for Convolutional Codes |journal=EURASIP Journal on Applied Signal Processing |volume=2006 |issue= |pages=95360 |date= 2006|doi=10.1155/ASP/2006/95360 |bibcode=2006EJASP2006..242W |doi-access=free }}</ref>


===Log-Map BCJR===
===Log-Map BCJR===

Latest revision as of 21:11, 21 June 2024

The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is an algorithm for maximum a posteriori decoding of error correcting codes defined on trellises (principally convolutional codes). The algorithm is named after its inventors: Bahl, Cocke, Jelinek and Raviv.[1] This algorithm is critical to modern iteratively-decoded error-correcting codes, including turbo codes and low-density parity-check codes.

Steps involved

[edit]

Based on the trellis:

Variations

[edit]

SBGT BCJR

[edit]

Berrou, Glavieux and Thitimajshima simplification.[2]

Log-Map BCJR

[edit]

[3]

Implementations

[edit]

See also

[edit]

References

[edit]
  1. ^ Bahl, L.; Cocke, J.; Jelinek, F.; Raviv, J. (March 1974). "Optimal Decoding of Linear Codes for minimizing symbol error rate". IEEE Transactions on Information Theory. 20 (2): 284–7. doi:10.1109/TIT.1974.1055186.
  2. ^ Wang, Sichun; Patenaude, François (2006). "A Systematic Approach to Modified BCJR MAP Algorithms for Convolutional Codes". EURASIP Journal on Applied Signal Processing. 2006: 95360. Bibcode:2006EJASP2006..242W. doi:10.1155/ASP/2006/95360.
  3. ^ Robertson, P.; Hoeher, P.; Villebrun, E. (1997). "Optimal and Sub-Optimal Maximum A Posteriori Algorithms Suitable for Turbo Decoding". European Transactions on Telecommunications. 8 (2): 119–125. doi:10.1002/ett.4460080202.
[edit]