Continuum structure function: Difference between revisions
Appearance
Content deleted Content added
m →References: {{refbegin}} |
TheMathCat (talk | contribs) references completed |
||
Line 4: | Line 4: | ||
}} |
}} |
||
In [[mathematics]], a '''continuum structure function (CSF)''' is defined by [[Laurence Baxter]] as a nondecreasing [[map (mathematics)|map]]ping from the unit [[hypercube]] to the unit [[interval (mathematics)|interval]]. It is used by Baxter to help in the [[Mathematical model]]ling of the level of performance of a system in terms of the performance levels of its components.<ref> |
In [[mathematics]], a '''continuum structure function (CSF)''' is defined by [[Laurence Baxter]] as a nondecreasing [[map (mathematics)|map]]ping from the unit [[hypercube]] to the unit [[interval (mathematics)|interval]]. It is used by Baxter to help in the [[Mathematical model]]ling of the level of performance of a system in terms of the performance levels of its components.<ref>{{cite journal |
||
| last1=Baxter | first1=Laurence A. | authorlink1=Laurence Baxter |
|||
| date=1984 |
|||
| title=Continuum structures I |
|||
| journal=Journal of Applied Probability |
|||
| volume=21 |
|||
| issue=4 |
|||
| pages=802–815 |
|||
| jstor=3213697 |
|||
| doi=10.2307/3213697}}</ref><ref>{{cite journal |
|||
| last1=Baxter | first1=Laurence A. | authorlink1=Laurence Baxter |
|||
| date=1986 |
|||
| title=Continuum structures. II |
|||
| journal=[[Mathematical Proceedings of the Cambridge Philosophical Society]] |
|||
| volume=99 |
|||
| issue=2 |
|||
| pages=331–338 |
|||
| doi=10.1017/S0305004100064240}}</ref><ref>{{cite journal |
|||
| last1=Kim | first1=Chul |
|||
| last2=Baxter | first2=Laurence A. | authorlink2=Laurence Baxter |
|||
| date=1987 |
|||
| title=Reliability importance for continuum structure functions |
|||
| journal=Journal of Applied Probability |
|||
| volume=24 |
|||
| issue=3 |
|||
| pages=779—785 |
|||
| jstor=3214108 |
|||
| doi=10.2307/3214108}}</ref> |
|||
==References== |
==References== |
||
{{Reflist}} |
{{Reflist}} |
||
{{refbegin}} |
{{refbegin}} |
||
* Kim, C., Baxter. L. A. (1987) "Axiomatic characterizations of continuum structure functions", ''Operations Research Letters'', 6 (6), 297–300, {{doi| 10.1016/0167-6377(87)90047-2}}. |
|||
==Further reading== |
|||
⚫ | *{{Cite journal | last1 = Baxter | first1 = |
||
*{{cite journal |
|||
| last1=Kim | first1=Chul |
|||
| last2=Baxter | first2=Laurence A. | authorlink2=Laurence Baxter |
|||
| date=1987 |
|||
| title=Axiomatic characterizations of continuum structure functions |
|||
| journal=[[Operations Research Letters]] |
|||
| volume=6 |
|||
| issue=6 |
|||
| pages=297–300 |
|||
| doi=10.1016/0167-6377(87)90047-2}} |
|||
⚫ | *{{Cite journal | last1 = Baxter | first1 = Laurence A. | authorlink1=Laurence Baxter | last2 = Lee | first2 = Seung Min | doi = 10.1017/S026996480000111X | title = Further Properties of Reliability Importance for Continuum Structure Functions | journal = Probability in the Engineering and Informational Sciences | volume = 3 | issue = 2 | pages = 237 | year = 2009 | s2cid = 122033755 }} |
||
{{refend}} |
{{refend}} |
||
Revision as of 18:54, 27 November 2024
![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In mathematics, a continuum structure function (CSF) is defined by Laurence Baxter as a nondecreasing mapping from the unit hypercube to the unit interval. It is used by Baxter to help in the Mathematical modelling of the level of performance of a system in terms of the performance levels of its components.[1][2][3]
References
- ^ Baxter, Laurence A. (1984). "Continuum structures I". Journal of Applied Probability. 21 (4): 802–815. doi:10.2307/3213697. JSTOR 3213697.
- ^ Baxter, Laurence A. (1986). "Continuum structures. II". Mathematical Proceedings of the Cambridge Philosophical Society. 99 (2): 331–338. doi:10.1017/S0305004100064240.
- ^ Kim, Chul; Baxter, Laurence A. (1987). "Reliability importance for continuum structure functions". Journal of Applied Probability. 24 (3): 779–785. doi:10.2307/3214108. JSTOR 3214108.
Further reading
- Kim, Chul; Baxter, Laurence A. (1987). "Axiomatic characterizations of continuum structure functions". Operations Research Letters. 6 (6): 297–300. doi:10.1016/0167-6377(87)90047-2.
- Baxter, Laurence A.; Lee, Seung Min (2009). "Further Properties of Reliability Importance for Continuum Structure Functions". Probability in the Engineering and Informational Sciences. 3 (2): 237. doi:10.1017/S026996480000111X. S2CID 122033755.