Jump to content

VO2 max: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
VO2 max levels: correct wording to more accurately reflect sources
No edit summary
Line 1: Line 1:
{{Redirect|VO2|the chemical compound|Vanadium(IV) oxide}}
{{Redirect|VO2|the chemical compound|Vanadium(IV) oxide}}
{{DISPLAYTITLE:VO<sub>2</sub> max}}
{{DISPLAYTITLE:VO<sub>2</sub> max}}
'''VO<sub>2</sub> max''' (also '''maximal oxygen consumption''', '''maximal oxygen uptake''', '''peak oxygen uptake''' or '''maximal aerobic capacity''') is the maximum capacity of an individual's body to transport and use oxygen during [[incremental exercise]], which reflects the [[physical fitness]] of the individual. The name is derived from V - [[volume]], O<sub>2</sub> - [[oxygen]], max - maximum.
'''VO<sub>2</sub> max''' (also '''maximal oxygen consumption''', '''maximal oxygen uptake''', '''peak oxygen uptake''' or '''maximal aerobic capacity''') is the maximum rate of oxygen consumption as measured during during [[incremental exercise]], most typically on a motorized treadmill.<ref name=Clemente_et_al_2009>Clemente, C. J., P. C. Withers, and G. G. Thompson. 2009. Metabolic rate and endurance capacity in [[Australia|Australian]] [[Varanus|varanid]] [[lizards]] ([[Squamata]]; [[Varanidae]]; [[Varanus]]). Biological Journal of the Linnean Society 97:664-676.</ref><ref name=Dlugosz_et_al_2013>Dlugosz, E. M., M. A. Chappell, T. H. Meek, P. Szafrañska, K. Zub, M. Konarzewski, J. H. Jones, J. E. P. W. Bicudo, V. Careau, and [[Theodore Garland, Jr.|T. Garland, Jr.]] 2013. Phylogenetic analysis of mammalian maximal oxygen consumption during exercise. Journal of Experimental Biology 216:4712-4721.</ref> Maximal oxygen consumption which reflects the aerobic [[physical fitness]] of the individual, and is an important determinant of their endurance capacity during prolonged, sub-maximal [[exercise]]. The name is derived from V - [[volume]], O<sub>2</sub> - [[oxygen]], max - maximum.


VO<sub>2</sub> max is expressed either as an absolute rate in [[litre]]s of oxygen per minute (L/min) or as a relative rate in millilitres of oxygen per [[kilogram]] of bodyweight per minute (i.e., mL/(kg·min)). The latter expression is often used to compare the performance of endurance sports athletes.
VO<sub>2</sub> max is expressed either as an absolute rate in (for example) [[litre]]s of oxygen per minute (L/min) or as a relative rate in (for example) millilitres of oxygen per [[kilogram]] of body [[mass]] per minute (e.g., mL/(kg·min)). The latter expression is often used to compare the performance of endurance sports athletes. However, VO<sub>2</sub> max generally does not vary linearly with body mass, either among individuals within a species or among species,<ref name=Clemente_et_al_2009></ref><ref name=Dlugosz_et_al_2013></ref> so comparisons of the performance capacities of individuals or species that differ in body size must be done with appropriate statistical procedures, such as [[analysis of covariance]].


==Measuring VO<sub>2</sub> max==
==Measuring VO<sub>2</sub> max==
Line 23: Line 23:


===Uth–Sørensen–Overgaard–Pedersen estimation===
===Uth–Sørensen–Overgaard–Pedersen estimation===
Another estimate of VO<sub>2</sub> max, based on maximum and resting heart rates, was created by a group of researchers from Denmark.<ref name="uth">{{cite web|url=http://www.ncbi.nlm.nih.gov/pubmed/14624296|title=Estimation of VO2max from the ratio between HRmax and HRrest--the Heart Rate Ratio Method|last=Uth|first=Niels|coauthors=Henrik Sørensen, Kristian Overgaard, Preben K. Pedersen|month=January | year=2004|publisher=Eur J Appl Physiol. 2004 Jan;91(1):111-5 |accessdate=2009-11-03}}</ref> It is given by:
Another estimate of VO<sub>2</sub> max for humans, based on maximum and resting heart rates, was created by a group of researchers from Denmark.<ref name="uth">{{cite web|url=http://www.ncbi.nlm.nih.gov/pubmed/14624296|title=Estimation of VO2max from the ratio between HRmax and HRrest--the Heart Rate Ratio Method|last=Uth|first=Niels|coauthors=Henrik Sørensen, Kristian Overgaard, Preben K. Pedersen|month=January | year=2004|publisher=Eur J Appl Physiol. 2004 Jan;91(1):111-5 |accessdate=2009-11-03}}</ref> It is given by:
:<math>\mathrm{VO_2\; max} = {15{ \mbox{HR}_{max} \over \mbox{HR}_{rest} }}</math>
:<math>\mathrm{VO_2\; max} = {15{ \mbox{HR}_{max} \over \mbox{HR}_{rest} }}</math>


Line 74: Line 74:
| accessdate = 2007-07-17 }}</ref>
| accessdate = 2007-07-17 }}</ref>


In sports where endurance is an important component in performance, such as [[cycling]], [[sport rowing|rowing]], [[cross-country skiing]], [[swimming (sport)|swimming]] and [[running]], world class athletes typically have high VO<sub>2</sub> maxima. Elite male runners can consume up to 85 mL/(kg·min), and female elite runners can consume about 77 mL/(kg·min).<ref name="Noakes">Noakes, Tim. 2001. ''The Lore of Running.'' (3rd edition) [[Oxford University Press]] ISBN 978-0-88011-438-7</ref> Five time [[Tour de France]] winner [[Miguel Indurain]] is reported to have had a VO<sub>2</sub> max of 88.0 at his peak,<ref>[http://www.runningforfitness.org/faq/vo2.php ]{{dead link|date=June 2013}}</ref> while cross-country skier [[Bjørn Dæhlie]] measured at 96 mL/(kg·min).<ref>[http://www.vg.no/vg/sport/ski/vm97/0226best.html Ski-VM 1997<!-- Bot generated title -->]</ref> Dæhlie's result was achieved out of season, and physiologist Erlend Hem who was responsible for the testing stated that he would not discount the possibility of the skier passing 100 mL/(kg·min) at his absolute peak. Norwegian cyclist Oskar Svendsen is thought to have recorded the highest VO<sub>2</sub> max of 97.5 mL/(kg·min), a "sensational" value in itself, made more remarkable by his young age (18 years old at the time).<ref>[http://www.velonation.com/News/ID/12929/If-all-goes-to-plan-big-future-predicted-for-junior-world-champion-Oskar-Svendsen.aspx If all goes to plan, big future predicted for junior world champion Oskar Svendsen]</ref> To put this into perspective, thoroughbred horses have a VO<sub>2</sub> max of around 180 mL/(kg·min). Siberian dogs running in the [[Iditarod Trail Sled Dog Race]] have VO<sub>2</sub> values as high as 240 mL/(kg·min).<ref>[http://www.news.cornell.edu/releases/Dec96/winterize.hrs.html Cornell Science News<!-- Bot generated title -->]</ref>
In sports where endurance is an important component in performance, such as [[cycling]], [[sport rowing|rowing]], [[cross-country skiing]], [[swimming (sport)|swimming]] and [[running]], world-class athletes typically have high VO<sub>2</sub> maxima. Elite male runners can consume up to 85 mL/(kg·min), and female elite runners can consume about 77 mL/(kg·min).<ref name="Noakes">Noakes, Tim. 2001. ''The Lore of Running.'' (3rd edition) [[Oxford University Press]] ISBN 978-0-88011-438-7</ref> Five time [[Tour de France]] winner [[Miguel Indurain]] is reported to have had a VO<sub>2</sub> max of 88.0 at his peak,<ref>[http://www.runningforfitness.org/faq/vo2.php ]{{dead link|date=June 2013}}</ref> while cross-country skier [[Bjørn Dæhlie]] measured at 96 mL/(kg·min).<ref>[http://www.vg.no/vg/sport/ski/vm97/0226best.html Ski-VM 1997<!-- Bot generated title -->]</ref> Dæhlie's result was achieved out of season, and physiologist Erlend Hem who was responsible for the testing stated that he would not discount the possibility of the skier passing 100 mL/(kg·min) at his absolute peak. Norwegian cyclist Oskar Svendsen is thought to have recorded the highest VO<sub>2</sub> max of 97.5 mL/(kg·min), a "sensational" value in itself, made more remarkable by his young age (18 years old at the time).<ref>[http://www.velonation.com/News/ID/12929/If-all-goes-to-plan-big-future-predicted-for-junior-world-champion-Oskar-Svendsen.aspx If all goes to plan, big future predicted for junior world champion Oskar Svendsen]</ref> To put this into perspective, thoroughbred horses have a VO<sub>2</sub> max of around 180 mL/(kg·min). Siberian dogs running in the [[Iditarod Trail Sled Dog Race]] have VO<sub>2</sub> values as high as 240 mL/(kg·min).<ref>[http://www.news.cornell.edu/releases/Dec96/winterize.hrs.html Cornell Science News<!-- Bot generated title -->]</ref>


The highest values in absolute terms are often found in rowers, as their much greater bulk makes up for a slightly lower VO<sub>2</sub> max per kg. Elite oarsmen measured in 1984 had VO<sub>2</sub> max values of 6.1±0.6 L/min and oarswomen 4.1±0.4 L/min.<ref>{{cite journal | journal= Sports Med. | date= 1984 Jul-Aug | volume=1(4) | pages=303-26 | title=Applied physiology of rowing | last=Hagerman | first=FC | pmid=6390606 | issue=4}}</ref> Rowers are interested in both absolute values of VO<sub>2</sub> max and in lung capacity, and the fact that they are measured in similar units means that the two are often confused. British rower Sir [[Matthew Pinsent]] is variously reported to have had a VO<sub>2</sub> of 7.5l/min<ref>{{cite web | url=http://q-power.co/Intensity3.html | title=Intensity (3 of 6) | publisher=Q-power indoor rowing team | first=James | last=Bailey}}</ref> or 8.5l/min, although the latter may represent confusion with his lung capacity of 8.5 litres.<ref>{{cite news | url=http://news.bbc.co.uk/sport1/hi/health_and_fitness/4291516.stm | title=What happens in a VO2 max test? | publisher=BBC Sport | date=2009}} - see an example here [http://concept2.co.uk/forum/viewtopic.php?f=4&t=15486], which suggests that although British rower [[Pete Reed]] has recorded a lung capacity of 11.68&nbsp;litres,([http://www.hounslowchronicle.co.uk/west-london-sport/west-london-other-sport/2012/08/09/gold-medallist-can-t-wait-to-get-back-to-chiswick-109642-31588050/ Hounslow Chronicle]) Pinsent still regards his VO<sub>2</sub> record as safe. A large lung capacity appears to be a particular advantage for rowing as it allows a rower to row more strokes at one breath per stroke.</ref> New Zealand sculler [[Rob Waddell]] has one of the highest absolute VO2 max levels ever tested.<ref>{{cite web | url=http://www.bbc.co.uk/blogs/martingough/2009/06/monsters_wanted.html | title=Monsters wanted | first=Martin | last=Gough | date=17 June 2009 | publisher=BBC}}</ref>
The highest values in absolute terms for humans are often found in rowers, as their much greater bulk makes up for a slightly lower VO<sub>2</sub> max per kg. Elite oarsmen measured in 1984 had VO<sub>2</sub> max values of 6.1±0.6 L/min and oarswomen 4.1±0.4 L/min.<ref>{{cite journal | journal= Sports Med. | date= 1984 Jul-Aug | volume=1(4) | pages=303-26 | title=Applied physiology of rowing | last=Hagerman | first=FC | pmid=6390606 | issue=4}}</ref> Rowers are interested in both absolute values of VO<sub>2</sub> max and in lung capacity, and the fact that they are measured in similar units means that the two are often confused. British rower Sir [[Matthew Pinsent]] is variously reported to have had a VO<sub>2</sub> of 7.5l/min<ref>{{cite web | url=http://q-power.co/Intensity3.html | title=Intensity (3 of 6) | publisher=Q-power indoor rowing team | first=James | last=Bailey}}</ref> or 8.5l/min, although the latter may represent confusion with his lung capacity of 8.5 litres.<ref>{{cite news | url=http://news.bbc.co.uk/sport1/hi/health_and_fitness/4291516.stm | title=What happens in a VO2 max test? | publisher=BBC Sport | date=2009}} - see an example here [http://concept2.co.uk/forum/viewtopic.php?f=4&t=15486], which suggests that although British rower [[Pete Reed]] has recorded a lung capacity of 11.68&nbsp;litres,([http://www.hounslowchronicle.co.uk/west-london-sport/west-london-other-sport/2012/08/09/gold-medallist-can-t-wait-to-get-back-to-chiswick-109642-31588050/ Hounslow Chronicle]) Pinsent still regards his VO<sub>2</sub> record as safe. A large lung capacity appears to be a particular advantage for rowing as it allows a rower to row more strokes at one breath per stroke.</ref> New Zealand sculler [[Rob Waddell]] has one of the highest absolute VO2 max levels ever tested.<ref>{{cite web | url=http://www.bbc.co.uk/blogs/martingough/2009/06/monsters_wanted.html | title=Monsters wanted | first=Martin | last=Gough | date=17 June 2009 | publisher=BBC}}</ref>


==Factors affecting VO<sub>2</sub> max==
==Factors affecting VO<sub>2</sub> max==
The factors affecting VO<sub>2</sub> are often divided into supply and demand factors.<ref name=bassett1>Bassett D.R Jr. & Howley E.T. (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 32(1):70-84.</ref> Supply is the transport of oxygen from the lungs to the mitochondria (including lung diffusion, stroke volume, blood volume, and capillary density of the skeletal muscle) while demand is the rate at which the mitochondria can reduce oxygen in the process of [[oxidative phosphorylation]].<ref name=bassett1 /> Of these, the supply factor is often considered to be the limiting one.<ref name=bassett1 /><ref name=bassett2>Bassett D.R Jr. & Howley E.T. (1997) Maximal oxygen uptake: "classical" versus "contemporary" viewpoints. Med Sci Sports Exerc 29(5) 591-603</ref> However, it has also been argued that while trained subjects probably are supply limited, untrained subjects can indeed have a demand limitation.<ref name=Newideas>Wagner, P.D. (2000) New ideas on limitations to VO2max. Exercise and Sport Sciences Reviews. 28(1):10-4.</ref>
The factors affecting VO<sub>2</sub> are often divided into supply and demand.<ref name=bassett1>Bassett D.R Jr. & Howley E.T. (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 32(1):70-84.</ref> Supply is the transport of oxygen from the lungs to the mitochondria (including lung diffusion, stroke volume, blood volume, and capillary density of the skeletal muscle) while demand is the rate at which the mitochondria can reduce oxygen in the process of [[oxidative phosphorylation]].<ref name=bassett1 /> Of these, the supply factor is often considered to be the limiting one.<ref name=bassett1 /><ref name=bassett2>Bassett D.R Jr. & Howley E.T. (1997) Maximal oxygen uptake: "classical" versus "contemporary" viewpoints. Med Sci Sports Exerc 29(5) 591-603</ref> However, it has also been argued that while trained subjects probably are supply limited, untrained subjects can indeed have a demand limitation.<ref name=Newideas>Wagner, P.D. (2000) New ideas on limitations to VO2max. Exercise and Sport Sciences Reviews. 28(1):10-4.</ref>


[[Tim Noakes]], a professor of exercise and sports science at the [[University of Cape Town]], describes a number of variables that may affect VO<sub>2</sub> max: age, [[gender]], fitness and training, changes in [[altitude]], and action of the ventilatory muscles.<ref name="Noakes">Noakes, Tim. 2003. ''The Lore of Running.'' (4th edition) [[Oxford University Press]] ISBN 0-87322-959-2</ref> Noakes also asserts that VO<sub>2</sub> max is a relatively poor predictor of performance in runners due to variations in [[running economy]] and [[fatigue (medical)|fatigue]] resistance during prolonged exercise.<ref name="Noakes"/>
[[Tim Noakes]], a professor of exercise and sports science at the [[University of Cape Town]], describes a number of factors that may affect VO<sub>2</sub> max: age, [[sex]], fitness and training, changes in [[altitude]], and action of the ventilatory muscles.<ref name="Noakes">Noakes, Tim. 2003. ''The Lore of Running.'' (4th edition) [[Oxford University Press]] ISBN 0-87322-959-2</ref> Noakes also asserts that VO<sub>2</sub> max is a relatively poor predictor of performance in runners due to variations in [[running economy]] and [[fatigue (medical)|fatigue]] resistance during prolonged exercise.<ref name="Noakes"/>


Cardiac output, pulmonary diffusion capacity, oxygen carrying capacity, and other peripheral limitations like muscle diffusion capacity, mitochondrial enzymes, and capillary density are all examples of VO<sub>2</sub> max determinants. The body works as a system. If one of these factor is sub-par, then the whole system loses its normal capacity to function properly.<ref name="Newideas"/>
Cardiac output, pulmonary diffusion capacity, oxygen carrying capacity, and other peripheral limitations like muscle diffusion capacity, mitochondrial enzymes, and capillary density are all examples of VO<sub>2</sub> max determinants. The body works as a system. If one of these factor is sub-par, then the whole system loses its normal capacity to function properly.<ref name="Newideas"/>


In theory, the drug [[Erythropoietin]] (EPO) can boost VO<sub>2</sub> by a significant amount. This makes it attractive to athletes in [[endurance sport]]s like professional cycling. By 1998 it had become widespread in cycling and led to the [[Festina affair]]<ref>[http://jap.physiology.org/content/105/2/581 Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport?] C. Lundby, P. Robach, R. Boushel, J. J. Thomsen, P. Rasmussen, M. Koskolou, J. A. L. Calbet. June 5, 2008, Journal of Applied Physiology {{DOI|10.1152/japplphysiol.90484.2008}}</ref><ref name=lode1>[http://www.academia.edu/1129538/Some_empirical_notes_on_the_epo_epidemic_in_professional_cycling EPO EPIDEMIC IN CYCLING: Some Empirical Notes on the ‗Epo Epidemic‘ in Professional Cycling], Hein F.M. Lodewijkx and Bram Brouwer, Department of Psychology, Open University, Heerlen, the Netherlands, 2011, 82 (4), 740-754 {{DOI|10.5641/027013611X13275192112069}}</ref> as well as being mentioned ubiquitously in the USADA 2012 report on the US Postal team.<ref>[http://cyclinginvestigation.usada.org/ USADA U.S. Postal Service Pro Cycling Team Investigation], Oct 2012, retr 2012 10 20 from usada.org</ref> [[Greg LeMond]] has suggested establishing a baseline for riders' VO<sub>2</sub> (and other attributes) to detect abnormal performance increases.<ref>[http://www.velonation.com/News/ID/5050/Greg-LeMonds-suggestions-for-a-credible-future-for-cycling.aspx Greg LeMond’s suggestions for a credible future for cycling] Conal Andrews, July 28, 2010, Velo Nation, retr 2012 10 20</ref>
The drug [[erythropoietin]] (EPO) can boost VO<sub>2</sub> max by a significant amount in both humans and other mammals.<ref>Kolb, E. M., S. A. Kelly, K. M. Middleton, L. S. Sermsakdi, M. A. Chappell, and [[Theodore Garland, Jr.|T. Garland, Jr. 2010. Erythropoietin elevates V. O2,max but not voluntary wheel running in mice. Journal of Experimental Biology 213:510-519.</ref> This makes EPO attractive to athletes in [[endurance sport]]s, such as professional cycling. By 1998 it had become widespread in cycling and led to the [[Festina affair]]<ref>[http://jap.physiology.org/content/105/2/581 Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport?] C. Lundby, P. Robach, R. Boushel, J. J. Thomsen, P. Rasmussen, M. Koskolou, J. A. L. Calbet. June 5, 2008, Journal of Applied Physiology {{DOI|10.1152/japplphysiol.90484.2008}}</ref><ref name=lode1>[http://www.academia.edu/1129538/Some_empirical_notes_on_the_epo_epidemic_in_professional_cycling EPO EPIDEMIC IN CYCLING: Some Empirical Notes on the ‗Epo Epidemic‘ in Professional Cycling], Hein F.M. Lodewijkx and Bram Brouwer, Department of Psychology, Open University, Heerlen, the Netherlands, 2011, 82 (4), 740-754 {{DOI|10.5641/027013611X13275192112069}}</ref> as well as being mentioned ubiquitously in the USADA 2012 report on the US Postal team.<ref>[http://cyclinginvestigation.usada.org/ USADA U.S. Postal Service Pro Cycling Team Investigation], Oct 2012, retr 2012 10 20 from usada.org</ref> [[Greg LeMond]] has suggested establishing a baseline for riders' VO<sub>2</sub> (and other attributes) to detect abnormal performance increases.<ref>[http://www.velonation.com/News/ID/5050/Greg-LeMonds-suggestions-for-a-credible-future-for-cycling.aspx Greg LeMond’s suggestions for a credible future for cycling] Conal Andrews, July 28, 2010, Velo Nation, retr 2012 10 20</ref>


==See also==
==See also==
Line 92: Line 92:
*[[Arteriovenous oxygen difference]]
*[[Arteriovenous oxygen difference]]
*[[Cardiorespiratory fitness]]
*[[Cardiorespiratory fitness]]
*[[Comparative physiology]]
*[[Jack Daniels (coach)#VDOT|VDOT]]
*[[Respirometry]]
*[[Respirometry]]
*[[Training effect]]
*[[Training effect]]
*[[Jack Daniels (coach)#VDOT|VDOT]]
*[[vVO2max|vVO<sub>2</sub>max]]
*[[vVO2max|vVO<sub>2</sub>max]]



Revision as of 18:30, 5 December 2013

VO2 max (also maximal oxygen consumption, maximal oxygen uptake, peak oxygen uptake or maximal aerobic capacity) is the maximum rate of oxygen consumption as measured during during incremental exercise, most typically on a motorized treadmill.[1][2] Maximal oxygen consumption which reflects the aerobic physical fitness of the individual, and is an important determinant of their endurance capacity during prolonged, sub-maximal exercise. The name is derived from V - volume, O2 - oxygen, max - maximum.

VO2 max is expressed either as an absolute rate in (for example) litres of oxygen per minute (L/min) or as a relative rate in (for example) millilitres of oxygen per kilogram of body mass per minute (e.g., mL/(kg·min)). The latter expression is often used to compare the performance of endurance sports athletes. However, VO2 max generally does not vary linearly with body mass, either among individuals within a species or among species,[1][2] so comparisons of the performance capacities of individuals or species that differ in body size must be done with appropriate statistical procedures, such as analysis of covariance.

Measuring VO2 max

VO2 max measurement through a modern metabolic cart during a graded exercise test on a treadmill

Accurately measuring VO2 max involves a physical effort sufficient in duration and intensity to fully tax the aerobic energy system. In general clinical and athletic testing, this usually involves a graded exercise test (either on a treadmill or on a cycle ergometer) in which exercise intensity is progressively increased while measuring ventilation and oxygen and carbon dioxide concentration of the inhaled and exhaled air. VO2 max is reached when oxygen consumption remains at steady state despite an increase in workload.

Fick equation

VO2 max is properly defined by the Fick equation:

, when these values are obtained during an exertion at a maximal effort.
where Q is the cardiac output of the heart, CaO2 is the arterial oxygen content, and CvO2 is the venous oxygen content.
(CaO2 – CvO2) is also known as the arteriovenous oxygen difference.[3]

Estimation of VO2 max

Tests measuring VO2 max can be dangerous in individuals who are not considered normal healthy subjects, as any problems with the respiratory and cardiovascular systems will be greatly exacerbated in clinically ill patients. Thus, many protocols for estimating VO2 max have been developed for those for whom a traditional VO2 max test would be too risky. These generally are similar to a VO2 max test, but do not reach the maximum of the respiratory and cardiovascular systems and are called sub-maximal tests.

Uth–Sørensen–Overgaard–Pedersen estimation

Another estimate of VO2 max for humans, based on maximum and resting heart rates, was created by a group of researchers from Denmark.[4] It is given by:

This equation uses maximum heart rate (HRmax) and resting heart rate (HRrest) to estimate VO2 max in mL/(kg·min).

Cooper test

Kenneth H. Cooper conducted a study for the United States Air Force in the late 1960s. One of the results of this was the Cooper test in which the distance covered running in 12 minutes is measured. Based on the measured distance, an estimate of VO2 max [in mL/(kg·min)] is:

where d12 is distance (in metres) covered in 12 minutes. There are several other reliable tests and VO2 max calculators to estimate VO2 max, most notably the multi-stage fitness test (or bleep test), based on the research paper by Leger and Lambert, "A Maximal Multi-Stage 20-m Shuttle Run Test to predict VO2 Max".

VO2 max levels

“Maximal oxygen uptake (VO2 max) is widely accepted as the single best measure of cardiovascular fitness and maximal aerobic power. Absolute values of VO2 max are typically 40-60% higher in men than in women.”[5]

The average untrained healthy male will have a VO2 max of approximately 35–40 mL/(kg·min).[6][7] The average untrained healthy female will score a VO2 max of approximately 27–31 mL/(kg·min).[6] These scores can improve with training and decrease with age, though the degree of trainability also varies very widely: conditioning may double VO2 max in some individuals, and will never improve it in others.[8][9]

In sports where endurance is an important component in performance, such as cycling, rowing, cross-country skiing, swimming and running, world-class athletes typically have high VO2 maxima. Elite male runners can consume up to 85 mL/(kg·min), and female elite runners can consume about 77 mL/(kg·min).[10] Five time Tour de France winner Miguel Indurain is reported to have had a VO2 max of 88.0 at his peak,[11] while cross-country skier Bjørn Dæhlie measured at 96 mL/(kg·min).[12] Dæhlie's result was achieved out of season, and physiologist Erlend Hem who was responsible for the testing stated that he would not discount the possibility of the skier passing 100 mL/(kg·min) at his absolute peak. Norwegian cyclist Oskar Svendsen is thought to have recorded the highest VO2 max of 97.5 mL/(kg·min), a "sensational" value in itself, made more remarkable by his young age (18 years old at the time).[13] To put this into perspective, thoroughbred horses have a VO2 max of around 180 mL/(kg·min). Siberian dogs running in the Iditarod Trail Sled Dog Race have VO2 values as high as 240 mL/(kg·min).[14]

The highest values in absolute terms for humans are often found in rowers, as their much greater bulk makes up for a slightly lower VO2 max per kg. Elite oarsmen measured in 1984 had VO2 max values of 6.1±0.6 L/min and oarswomen 4.1±0.4 L/min.[15] Rowers are interested in both absolute values of VO2 max and in lung capacity, and the fact that they are measured in similar units means that the two are often confused. British rower Sir Matthew Pinsent is variously reported to have had a VO2 of 7.5l/min[16] or 8.5l/min, although the latter may represent confusion with his lung capacity of 8.5 litres.[17] New Zealand sculler Rob Waddell has one of the highest absolute VO2 max levels ever tested.[18]

Factors affecting VO2 max

The factors affecting VO2 are often divided into supply and demand.[19] Supply is the transport of oxygen from the lungs to the mitochondria (including lung diffusion, stroke volume, blood volume, and capillary density of the skeletal muscle) while demand is the rate at which the mitochondria can reduce oxygen in the process of oxidative phosphorylation.[19] Of these, the supply factor is often considered to be the limiting one.[19][20] However, it has also been argued that while trained subjects probably are supply limited, untrained subjects can indeed have a demand limitation.[21]

Tim Noakes, a professor of exercise and sports science at the University of Cape Town, describes a number of factors that may affect VO2 max: age, sex, fitness and training, changes in altitude, and action of the ventilatory muscles.[10] Noakes also asserts that VO2 max is a relatively poor predictor of performance in runners due to variations in running economy and fatigue resistance during prolonged exercise.[10]

Cardiac output, pulmonary diffusion capacity, oxygen carrying capacity, and other peripheral limitations like muscle diffusion capacity, mitochondrial enzymes, and capillary density are all examples of VO2 max determinants. The body works as a system. If one of these factor is sub-par, then the whole system loses its normal capacity to function properly.[21]

The drug erythropoietin (EPO) can boost VO2 max by a significant amount in both humans and other mammals.[22] This makes EPO attractive to athletes in endurance sports, such as professional cycling. By 1998 it had become widespread in cycling and led to the Festina affair[23][24] as well as being mentioned ubiquitously in the USADA 2012 report on the US Postal team.[25] Greg LeMond has suggested establishing a baseline for riders' VO2 (and other attributes) to detect abnormal performance increases.[26]

See also

References

  1. ^ a b Clemente, C. J., P. C. Withers, and G. G. Thompson. 2009. Metabolic rate and endurance capacity in Australian varanid lizards (Squamata; Varanidae; Varanus). Biological Journal of the Linnean Society 97:664-676.
  2. ^ a b Dlugosz, E. M., M. A. Chappell, T. H. Meek, P. Szafrañska, K. Zub, M. Konarzewski, J. H. Jones, J. E. P. W. Bicudo, V. Careau, and T. Garland, Jr. 2013. Phylogenetic analysis of mammalian maximal oxygen consumption during exercise. Journal of Experimental Biology 216:4712-4721.
  3. ^ "Arteriovenous oxygen difference". Sports Medicine, Sports Science and Kinesiology. Net Industries and its Licensors. 2011. Retrieved 30 April 2011.
  4. ^ Uth, Niels (2004). "Estimation of VO2max from the ratio between HRmax and HRrest--the Heart Rate Ratio Method". Eur J Appl Physiol. 2004 Jan;91(1):111-5. Retrieved 2009-11-03. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  5. ^ Thomas E. Hyde and Marianne S. Gengenbach, Conservative Management of Sports Injuries (2nd ed; Sudbury, Mass.: Jones & Bartlett, 2007), 845.
  6. ^ a b Heywood, V (1998). "Advance Fitness Assessment & Exercise Prescription, 3rd Ed". p. 48. Cite error: The named reference "Heywood_1998" was defined multiple times with different content (see the help page).
  7. ^ Guyton, A. & Hall, J.E. (2011). "Textbook of Medical Physiology, 12th Ed". pp. 1035–1036.{{cite news}}: CS1 maint: multiple names: authors list (link)
  8. ^ Bouchard, Claude (September 1, 1999). "Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study". Journal of Applied Physiology. 87 (3): 1003–1008. PMID 10484570. Retrieved 2007-07-17. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ Kolata, Gina (February 12, 2002). "Why Some People Won't Be Fit Despite Exercise". The New York Times. Retrieved 2007-07-17.
  10. ^ a b c Noakes, Tim. 2001. The Lore of Running. (3rd edition) Oxford University Press ISBN 978-0-88011-438-7 Cite error: The named reference "Noakes" was defined multiple times with different content (see the help page).
  11. ^ [1][dead link]
  12. ^ Ski-VM 1997
  13. ^ If all goes to plan, big future predicted for junior world champion Oskar Svendsen
  14. ^ Cornell Science News
  15. ^ Hagerman, FC (1984 Jul-Aug). "Applied physiology of rowing". Sports Med. 1(4) (4): 303–26. PMID 6390606. {{cite journal}}: Check date values in: |date= (help)
  16. ^ Bailey, James. "Intensity (3 of 6)". Q-power indoor rowing team.
  17. ^ "What happens in a VO2 max test?". BBC Sport. 2009. - see an example here [2], which suggests that although British rower Pete Reed has recorded a lung capacity of 11.68 litres,(Hounslow Chronicle) Pinsent still regards his VO2 record as safe. A large lung capacity appears to be a particular advantage for rowing as it allows a rower to row more strokes at one breath per stroke.
  18. ^ Gough, Martin (17 June 2009). "Monsters wanted". BBC.
  19. ^ a b c Bassett D.R Jr. & Howley E.T. (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 32(1):70-84.
  20. ^ Bassett D.R Jr. & Howley E.T. (1997) Maximal oxygen uptake: "classical" versus "contemporary" viewpoints. Med Sci Sports Exerc 29(5) 591-603
  21. ^ a b Wagner, P.D. (2000) New ideas on limitations to VO2max. Exercise and Sport Sciences Reviews. 28(1):10-4.
  22. ^ Kolb, E. M., S. A. Kelly, K. M. Middleton, L. S. Sermsakdi, M. A. Chappell, and [[Theodore Garland, Jr.|T. Garland, Jr. 2010. Erythropoietin elevates V. O2,max but not voluntary wheel running in mice. Journal of Experimental Biology 213:510-519.
  23. ^ Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport? C. Lundby, P. Robach, R. Boushel, J. J. Thomsen, P. Rasmussen, M. Koskolou, J. A. L. Calbet. June 5, 2008, Journal of Applied Physiology doi:10.1152/japplphysiol.90484.2008
  24. ^ EPO EPIDEMIC IN CYCLING: Some Empirical Notes on the ‗Epo Epidemic‘ in Professional Cycling, Hein F.M. Lodewijkx and Bram Brouwer, Department of Psychology, Open University, Heerlen, the Netherlands, 2011, 82 (4), 740-754 doi:10.5641/027013611X13275192112069
  25. ^ USADA U.S. Postal Service Pro Cycling Team Investigation, Oct 2012, retr 2012 10 20 from usada.org
  26. ^ Greg LeMond’s suggestions for a credible future for cycling Conal Andrews, July 28, 2010, Velo Nation, retr 2012 10 20