Cuttlefish Optimization Algorithm: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 15:
[[File:3-Cuttlefishs.jpg|thumb|Cuttlefish]]
 
The patterns and colors seen in cuttlefish are produced by reflected light from different layers of cells including (chromatophores, leucophores and iridophores). Chromatophores cells contain a saccule that holds a pigment (red, orange, yellow, black, and brown) as well as 15-25 muscles, when the muscles contract, they stretrch the saccule allowing the pigment insede to cover a large surface area. When the muscles relax, the saccule shrinks and hides the pigment <ref name="Flory, 1969">Flory, E. (1969). Ultrastructure and function of cephalopod chromatophores. Am Zool., 9(2), 429-242. doi: http://dx.doi.org/10.1093/icb/9.2.429.</ref>. But a set of mirror-like cells (iridophores and leucophores) allows cuttlefish skin to assume all the rich and varied colors of its environment. The appearance of the cuttlefish thus depends on which skin elements affect the light incident on the skin. Light may be reflected by either chromatophores or by reflecting cells (iridophores or leucophores) or a combination of both, and it is the physiological changeability of the chromatophores and reflecting cells that enables the cuttlefish to produce such a wide repertoire of optical effects (MESSENGER, 2001) <ref name="MESSENGER, 2001">MESSENGER, J. B. (2001). Cephalopod chromatophores: neurobiology and natural history. Biological Reviews, 76(4), 473-528. doi: 10.1017/S1464793101005772.</ref> .
 
[[File:Cuttlefish2.png|thumb|The six cases of reflection used by the Cuttlefish]]