Jump to content

CSS code: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Holting (talk | contribs)
m Added a missing \perp to the construction.
Tag: Reverted
Line 4: Line 4:
== Construction ==
== Construction ==


Let <math>C_1</math> and <math>C_2</math> be two (classical) <math> [n,k_1]</math>, <math> [n,k_2]</math> codes such, that <math> C_2 \subset C_1 </math> and <math> C_1 , C_2^\perp</math> both have [[Block code|minimal distance]] <math> \geq 2t+1</math>, where <math> C_2^\perp</math> is the code [[Dual code|dual]] to <math> C_2</math>. Then define <math> \text{CSS}(C_1,C_2)</math>, the CSS code of <math> C_1</math> over <math> C_2</math> as an <math> [n,k_1 - k_2, d]</math> code, with <math> d \geq 2t+1 </math> as follows:
Let <math>C_1</math> and <math>C_2</math> be two (classical) <math> [n,k_1]</math>, <math> [n,k_2]</math> codes such, that <math> C_2^\perp \subset C_1 </math> and <math> C_1 , C_2^\perp</math> both have [[Block code|minimal distance]] <math> \geq 2t+1</math>, where <math> C_2^\perp</math> is the code [[Dual code|dual]] to <math> C_2</math>. Then define <math> \text{CSS}(C_1,C_2)</math>, the CSS code of <math> C_1</math> over <math> C_2</math> as an <math> [n,k_1 - k_2, d]</math> code, with <math> d \geq 2t+1 </math> as follows:


Define for <math> x \in C_1 : {{|}} x + C_2 \rangle := </math> <math> 1 / \sqrt{ {{|}} C_2 {{|}} } </math> <math> \sum_{y \in C_2} {{|}} x + y \rangle</math>, where <math> + </math> is bitwise addition modulo 2. Then <math> \text{CSS}(C_1,C_2) </math> is defined as <math> \{ {{|}} x + C_2 \rangle \mid x \in C_1 \} </math>.
Define for <math> x \in C_1 : {{|}} x + C_2 \rangle := </math> <math> 1 / \sqrt{ {{|}} C_2 {{|}} } </math> <math> \sum_{y \in C_2} {{|}} x + y \rangle</math>, where <math> + </math> is bitwise addition modulo 2. Then <math> \text{CSS}(C_1,C_2) </math> is defined as <math> \{ {{|}} x + C_2 \rangle \mid x \in C_1 \} </math>.

Revision as of 09:43, 7 October 2020

In quantum error correction, CSS codes, named after their inventors, Robert Calderbank, Peter Shor and Andrew Steane, are a special type of Stabilizer codes constructed from classical codes with some special properties. An example of a CSS code is the Steane code.

Construction

Let and be two (classical) , codes such, that and both have minimal distance , where is the code dual to . Then define , the CSS code of over as an code, with as follows:

Define for , where is bitwise addition modulo 2. Then is defined as .

References

Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-00217-3. OCLC 844974180.