From Wikipedia, the free encyclopedia
Content deleted Content added
Line 22:
Line 22:
|-
|-
| <math>f'(z)</math>
| <math>f'(z)</math>
| <math>= u_x (z, 0) + iu_y (z, 0)</math>
| <math>= u_x (x , y ) + iu_y (x , y )</math>
|-
|-
|
|
| <math>= v_y (z, 0) + iv_x (z, 0)</math>
| <math>= v_y (x , y ) + iv_x (x , y )</math>
|}
|}
Line 33:
Line 33:
|-
|-
| <math>f'(z)</math>
| <math>f'(z)</math>
| <math>= u_x (z, 0) + iu_y (z, 0)</math>
| <math>= u_x (x , y ) + iu_y (x , y )</math>
|-
|-
|
|
| <math>= v_y (z, 0) + iv_x (z, 0)</math>
| <math>= v_y (x , y ) + iv_x (x , y )</math>
|}
|}
Revision as of 08:22, 5 March 2007
We are interested in studying how complex analytic functions behave when limited to the real line. So, let
D
{\displaystyle \mathbb {D} }
be a domain that contains some part of the real line and let
f
(
x
)
{\displaystyle f(x)}
be a complex analytic function from a domain
D
{\displaystyle \mathbb {D} }
into
C
{\displaystyle \mathbb {C} }
. Since
f
{\displaystyle f}
is analytic it has harmonic conjugates, call them
u
(
x
,
y
)
{\displaystyle u(x,y)}
and
v
(
x
,
y
)
{\displaystyle v(x,y)}
. So,
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
{\displaystyle f(z)=u(x,y)+iv(x,y)}
An important result follows:
f
′
(
z
)
{\displaystyle f'(z)}
=
∫
f
′
(
z
)
d
z
{\displaystyle =\int f'(z)\,dz}
=
∫
u
x
(
z
,
0
)
+
i
u
y
(
z
,
0
)
d
z
{\displaystyle =\int u_{x}(z,0)+iu_{y}(z,0)\,dz}
=
∫
v
y
(
z
,
0
)
+
i
v
x
(
z
,
0
)
d
z
{\displaystyle =\int v_{y}(z,0)+iv_{x}(z,0)\,dz}
We will derive the above result by using the conjugates of
f
′
(
x
)
{\displaystyle f'(x)}
. The domain of f and
f
¯
{\displaystyle {\overline {f}}}
need not be the same so we will let
D
¯
=
{
z
:
z
¯
∈
D
}
{\displaystyle {\overline {\mathbb {D} }}=\{z:{\overline {z}}\in \mathbb {D} \}}
, and
D
∗
=
D
⋂
D
¯
{\displaystyle \mathbb {D^{*}} =\mathbb {D} \bigcap {\overline {\mathbb {D} }}}
. In this way both
f
{\displaystyle f}
and
f
¯
{\displaystyle {\overline {f}}}
will be defined on
D
∗
{\displaystyle \mathbb {D^{*}} }
. Now since
f
{\displaystyle f}
is analytic on
D
∗
{\displaystyle \mathbb {D^{*}} }
we have that
f
′
(
z
)
{\displaystyle f'(z)}
=
u
x
(
x
,
y
)
+
i
u
y
(
x
,
y
)
{\displaystyle =u_{x}(x,y)+iu_{y}(x,y)}
=
v
y
(
x
,
y
)
+
i
v
x
(
x
,
y
)
{\displaystyle =v_{y}(x,y)+iv_{x}(x,y)}
By the substitution y = 0 and the Cauchy-Riemann equations we arrive at
f
′
(
z
)
{\displaystyle f'(z)}
=
u
x
(
x
,
y
)
+
i
u
y
(
x
,
y
)
{\displaystyle =u_{x}(x,y)+iu_{y}(x,y)}
=
v
y
(
x
,
y
)
+
i
v
x
(
x
,
y
)
{\displaystyle =v_{y}(x,y)+iv_{x}(x,y)}
To simplify notation we let
F
=
f
′
{\displaystyle F=f'}
and we note that,
F
(
z
)
¯
=
u
x
(
x
,
−
y
)
+
i
u
y
(
x
,
−
y
)
{\displaystyle {\overline {F(z)}}=u_{x}(x,-y)+iu_{y}(x,-y)}