Jump to content

Talk:Strassen algorithm

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Jitse Niesen (talk | contribs) at 00:49, 23 February 2007 (I"m sorry, but I don't see where the formula at MathWorld differs from the formula here. Could you please be more specific?). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

While a lot of older textbooks will say that "additions don't matter, but multiplications do". That is usually not relevant anymore. Multiplying numbers is slower if you are working with multi-word representations of numbers (sometimes called 'big numbers'), but if you just multiplying "float"s or "double"s then multiplications and additions take the same amount of time on most processors (as far as i know) today. I'm going to change the article to say, "if we only consider multiplications" without the statement bout multiplications being inherently slower.... :)

Yes, it depends on the sizes of the numbers being multiplied. Perhaps a clarification of this point should be added to the article? I'm not familiar with the size of the matrix components used in most matrix algorithms so I will defer this point to the experts. - Gauge 03:19, 21 Jan 2005 (UTC)
This is mathematical thing, not a technical article. It states theoretical bounds.--213.141.159.52 14:30, 7 March 2006 (UTC)[reply]

I am unfamiliar with the use of blackboard bold to denote an arbitrary field, as I understand it to mean one of the canonical sets of numbers (e.g., the complex numbers, the integers, etc.). Shouldn't the article use K or K instead of ? Pmdboi 18:05, 19 February 2006 (UTC)[reply]

Some texts use or K to emphasize the point that K is a field but I think most text use a simple K instead. I changed the article accordingly. And I changed K into the more common F. MathMartin 19:09, 19 February 2006 (UTC)[reply]

Looking at Mathworld, I see a different formula for M1: http://mathworld.wolfram.com/StrassenFormulas.html Doing a simple case by hand, the wikipedia ones seem wrong. 141.218.136.204 20:07, 22 February 2007 (UTC)[reply]

I"m sorry, but I don't see where the formula at MathWorld differs from the formula here. Could you please be more specific? -- Jitse Niesen (talk) 00:49, 23 February 2007 (UTC)[reply]