Jump to content

Proper complexity function

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A proper complexity function is a function f mapping a natural number to a natural number such that:

  • f is nondecreasing;
  • there exists a k-string Turing machine M such that on any input of length n, M halts after O(n + f(n)) steps, uses O(f(n)) space, and outputs f(n) consecutive blanks.

If f and g are two proper complexity functions, then f + g, fg, and 2f are also proper complexity functions.

Similar notions include honest functions, space-constructible functions, and time-constructible functions.

References

Myashnikov, Alexei; Shpilrain, Vladimir; Ushakov, Vladimir (2008). Group-based Cryptography. Birkhauser. p. 28. ISBN 978-3-7643-8826-3.