Jump to content

Structure-based assignment

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Structure-Based Assignment (SBA) is a technique to accelerate the resonance assignment which is a key bottleneck of NMR (Nuclear magnetic resonance) structural biology.[1] A homologous (similar) protein is used as a template to the target protein in SBA. This template protein provides prior structural information about the target protein and leads to faster resonance assignment . By analogy, in X-ray Crystallography, the molecular replacement technique allows solution of the crystallographic phase problem when a homologous structural model is known, thereby facilitating rapid structure determination.[2] Some of the SBA algorithms are CAP which is an RNA assignment algorithm which performs an exhaustive search over all permutations,[3] MARS which is a program for robust automatic backbone assignment [4] and Nuclear Vector Replacement (NVR) which is a molecular replacement like approach for SBA of resonances and sparse Nuclear Overhauser Effect (NOE)'s.[5][6][7]

References

  1. ^ Bartels, Christian; Billeter, Martin; Guentert, Peter; Wuethrich, Kurt (30 April 1996). "Automated sequence-specific NMR assignment of homologous proteins using the program GARANT". Journal of Biomolecular NMR. 7 (3): 207–13. doi:10.1007/BF00202037. PMID 22911044. S2CID 9450778.
  2. ^ Rossman, M. G.; Blow, D. M. (1962), "The detection of sub-units within the crystallographic asymmetric unit", Acta Crystallogr. D, 15: 24–31, CiteSeerX 10.1.1.319.3019, doi:10.1107/s0365110x62000067.
  3. ^ Al-Hashimi, H. M.; Gorin, A.; Majumdar, A.; Gosser, Y.; Patel, D. J. (2002), "Towards structural genomics of RNA: Rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings", J. Mol. Biol., 318 (3): 637–649, doi:10.1016/s0022-2836(02)00160-2, PMID 12054812.
  4. ^ Jung, Y.; Zweckstetter, M. (2004), "Mars - robust automatic backbone assignment of proteins", Journal of Biomolecular NMR, 30 (1): 11–23, doi:10.1023/b:jnmr.0000042954.99056.ad, hdl:11858/00-001M-0000-0012-EC52-9, PMID 15452431, S2CID 3006904.
  5. ^ Langmead, C. J.; Yan, A.; Lilien, R.; Wang, L.; Donald, B. R. (2004), "A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments", J. Comp. Bio., 11 (2–3): 277–98, CiteSeerX 10.1.1.15.8054, doi:10.1089/1066527041410436, PMID 15285893.
  6. ^ Langmead, C. J.; Donald, B. R. (2004), "An Expectation/Maximization Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments", J. Comp. Bio., 29 (2): 111–138, CiteSeerX 10.1.1.630.1110, doi:10.1023/b:jnmr.0000019247.89110.e6, PMID 15014227, S2CID 12443551.
  7. ^ Apaydin, M. S.; Catay, B.; Patrick, N.; Donald, B. R. (2010), "NVR-BIP: nuclear vector replacement using binary integer programming for NMR structure-based assignments", The Computer Journal, 54 (January): 708–716, doi:10.1093/comjnl/bxp120, PMC 4287374, PMID 25580019.