THAP3
This article, THAP3, has recently been created via the Articles for creation process. Please check to see if the reviewer has accidentally left this template after accepting the draft and take appropriate action as necessary.
Reviewer tools: Inform author |

THAP domain-containing protein 3 (THAP3) is a protein that, in Homo sapiens (humans), is encoded by the THAP3 gene.[3] The THAP3 protein is as known as MGC33488, LOC90326, and THAP domain-containing, apoptosis associated protein 3. This protein contains the Thanatos-associated protein (THAP) domain[4] and a host-cell factor 1C binding motif.[5] These domains allow THAP3 to influence a variety of processes, including transcription and neuronal development.[6] THAP3 is ubiquitously expressed in H. sapiens, though expression is highest in the kidneys.[3]
Gene
The H. sapiens THAP3 gene is a protein-encoding gene that is located on the plus strand of chromosome 1[3] at cytogenetic location 1p36.31.[7] It is 10,727 base pairs long, spanning from genomic coordinates 6,624,868-6,635,595.[7] It contains 6 exons.[8]

Expression
In H. sapiens, THAP3 gene is expressed ubiquitously throughout different tissues, and expression is greatest in the kidneys.[9] It has also been determined that expression of THAP3 tends to be slightly higher in organs located in the abdomen and male and female sexual organs, such as the ovaries, testes, prostate, adrenal gland, spleen, liver, and colon, though expression in the kidneys is 1.4-1.5x higher than those organs.[9] THAP3 mRNA is 1.3x. more abundant in H. sapiens fetal brain tissue than in H. sapiens adult kidney tissue.[10]
mRNA
Transcription of the THAP3 gene can result in 11 different mRNA variants, of which 8 are alternatively spliced and 3 are unspliced.[3] Variant 1 is the predominant variant and encodes THAP3 protein isoform 1.[3]
Sequence Length (nucleotides) | Accession Number[3] | |
---|---|---|
1 | 1358 | NM_001195752.2[12] |
2 | 2071 | NM_138350.4[13] |
3 | 1361 | NM_001195753.2[14] |
4 | 1262 | NM_001394496.1[15] |
5 | 2050 | NM_001394497.1[16] |
6 | 2047 | NM_001394498.1[17] |
7 | 1123 | NM_001394499.1[18] |
8 | 1120 | NM_001394500.1[19] |
Protein

The H. sapiens THAP3 protein is predicted to have a molecular weight of 26.9 kiloDaltons[20] and a pI of 10.26.[21] The amino acid sequence is isoleucine and tyrosine rich and arginine poor.[20] Characteristics domains of H. sapiens are the THAP domain (THAP) and the hell-cell factor 1C binding motif (HCM).[3]
Isoforms
Due to having 8 alternatively spliced variants, there are 8 THAP3 isoforms.[3]
Isoform | Sequence Length (amino acids) | Accession Number | Encoded By |
---|---|---|---|
1 | 238 | NP_001182681.1[22] | Variant 1 |
2 | 175 | NP_612359.2[23] | Variant 2 |
3 | 239 | NP_001182682.1[24] | Variant 3 |
4 | 236 | NP_001381425.1[25] | Variant 4 |
5 | 168 | NP_001381426.1[26] | Variant 5 |
6 | 167 | NP_001381427.1[27] | Variant 6 |
7 | 148 | NP_001381428.1[28] | Variant 7 |
8 | 147 | NP_001381429.1[29] | Variant 8 |
Structure

The predicted H. sapiens THAP3 tertiary structure contains a globular region and an alpha helix.[1][2] The globular region is located near the N-terminus of the sequence and is the structure of the THAP domain. It spans amino acids 4-82.[33] The alpha helix is located from amino acids 186-230 and contains the host-cell factor 1C binding motif.[33]
Regulation
Localization
THAP3 can be localized in the nucleus or mitochondria of H. sapiens cells.[34]
Post-Translation Modifications
The H. sapiens the THAP3 protein has 30 predicted phosphorylation sites, 28 predicted O-β-glycosylation sites, and 11 predicted Yin-Yang sites.[31][32] Many proteins involved in transcription regulation are influenced by phosphorylation and glycosylation sites, which corroborates THAP3's function.[35]
Homology and Evolution
Paralogs
The H. sapiens THAP3 protein, along with several other proteins, is part of the THAP family of proteins.[36] All of these proteins contain the THAP domain and are, thus, paralogs of H. sapiens THAP3.[11]
E-Value![11]Percent Identity to THAP3[11] | ||
---|---|---|
THAP1[37] | 8×10-23 | 48.00 |
THAP2[38] | 6×10-17 | 45.24 |
THAP5[39] | 4×10-13 | 31.96 |
THAP6[40] | 6×10-6 | 34.44 |
THAP7[41] | 1×10-7 | 33.33 |
THAP8[42] | 8×10-11 | 31.96 |
THAP9[43] | 2×10-8 | 32.99 |
Orthologs

There are approximately 206 orthlologs of H. sapiens THAP3.[3] Orthologs can be found in a variety of taxomonic classes, including mammals, reptiles, amphibians, bony fishes, and cartilaginous fishes.[11] However, there are no orthologs in bacteria, fungi, protists, archaea, plants, invertebrates, or birds.[11] Additionally, not all orders are represented with in a class. For example, in reptiles, orthologs to H. sapiens THAP3 are found in testudines (turtles or tortoises) and not found in crocodilia (crocodiles and alligators) or squamata (lizards and snakes).[11] Similarly, there are only orthologs in apoda within amphibians.[11] There are no orthologs in anura (frogs) or urodela (salamanders).[11]
In closely related organisms, those diverged 0-160 million years ago (MYA), percent similarity of orthologs ranges from 36-82.9%. THAP3 sequences in rodents are the least conserved compared to H. sapiens. Sequences that diverged 319-353 MYA, those moderately related, have 47.2-68.9% similarity to H. sapiens THAP3, and 41.3-54.1% similarity in organisms that are distantly related, diverged 431-464 MYA.
Scientific Name | Common Name | Taxonomic Order | Date of Divergence![46]Accession Number![11]Percent Identity to THAP3![11]Percent Similarity to THAP3[47] | ||||
---|---|---|---|---|---|---|---|
Mammals | Marmota flaviventris | Yellow-bellied marmot | Rodentia | 87 | XP_027803226.1[48] | 29.9 | 36 |
Lontra canadensis | North American river otter | Carnivora | 94 | XP_032719186.1[49] | 59.5 | 65.8 | |
Eptesicus fuscus | Big brown bat | Chiroptera | 94 | XP_028016747.1[50] | 65.0 | 69.6 | |
Balaenoptera musculus | Blue whale | Cetacea | 94 | XP_036686252.1[51] | 77.5 | 82.9 | |
Dromiciops gliroides | Colocolo opossum | Microbiotheria | 160 | XP_043850206.1[52] | 64.6 | 74.5 | |
Phascolarctos cinereus | Koala | Diprotodontia | 160 | XP_020830574.1[53] | 65.7 | 76.4 | |
Reptiles | Caretta caretta | Loggerhead turtle | Testudines | 319 | XP_048680971.1[54] | 36.9 | 47.2 |
Gopherus evgoodei | Goode's thornscrub tortoise | Testudines | 319 | XP_030393185.1[55] | 48.9 | 58.1 | |
Chelonoidis abingdonii | Abingdon Island giant tortoise | Testudines | 319 | XP_032619750.1[56] | 48.9 | 61.4 | |
Mauremys mutica | Yellow pond turtle | Testudines | 319 | XP_044852367.1[57] | 49.0 | 60.9 | |
Amphibians | Microcaecilia unicolor | Microcaecilia unicolor | Gymnophiona | 353 | XP_030041702.1[58] | 41.2 | 56.8 |
Geotrypetes seraphini | Gaboon caecilian | Gymnophiona | 353 | XP_033777236.1[59] | 44.2 | 57.8 | |
Bony Fishes | Electrophorus electricus | Electric eel | Gymnotiformes | 431 | XP_026873261.2[60] | 31.9 | 41.3 |
Coregonus clupeaformis | Lake whitefish | Salmoniformes | 431 | XP_041712304.2[61] | 32.9 | 47.7 | |
Brienomyrus brachyistius | Baby whale | Osteoglossiformes | 431 | XP_048872538.1[62] | 33.5 | 46.3 | |
Puntigrus tetrazona | Sumatra barb | Cypriniformes | 431 | XP_043081346.1[63] | 34.0 | 48.1 | |
Cartilaginous Fishes | Rhincodon typus | Whale shark | Orectolobiformes | 464 | XP_020386430.1[64] | 39.0 | 53.4 |
Chiloscyllium plagiosum | White-spotted bamboo shark | Orectolobiformes | 464 | XP_043531920.1[65] | 39.0 | 53.0 | |
Amblyraja radiata | Thorny skate | Rajiformes | 464 | XP_032904038.1[66] | 40.2 | 54.1 |
Evolution
H. sapiens THAP3 has evolved at a rate similar to H. sapiens fibrinogen alpha, which is involved in the immune system.[11]
Protein Interactions
H. sapiens THAP3 interacts with proteins involved in various cellular processes, like transcription regulation and neuronal development.[6] It is also interacts with molecular chaperones during its translation.
Protein Name | Identified By![68]Interaction Type | ||
---|---|---|---|
Transcription Regulation | CHAT | two hybrid assay | Functional |
FGFR3 | two hybrid assay | Functional | |
HCF1C[69] | affinity capture - mass spectrometry | Functional | |
OGT[69] | affinity capture - mass spectrometry | Functional | |
PKN1 | two hybrid assay | Functional | |
POLR2A | two hybrid assay | Functional | |
TARDBP | two hybrid assay | Functional | |
Neuronal Development | LSAMP | two hybrid assay | Functional |
DNAJB6 | two hybrid assay | Functional | |
Protein Folding | BAG6 | two hybrid assay | Developmental |
Clinical Significance
THAP3 contributes to the presentation of X-linked Dystonia-Parkinsonism, also known as Lubag Syndrome.[70] This disease is a neurodegenerative movement disorder that predominantly affects males of Filipino descent.[71] Symptoms include tremors, bradykinesia, rigidity, postural instability, shuffling gait and dystonia, which typically develops later in life.[71]
References
- ^ a b Jumper, John; Evans, Richard; Pritzel, Alexander; Green, Tim; Figurnov, Michael; Ronneberger, Olaf; Tunyasuvunakool, Kathryn; Bates, Russ; Žídek, Augustin; Potapenko, Anna; Bridgland, Alex; Meyer, Clemens; Kohl, Simon A. A.; Ballard, Andrew J.; Cowie, Andrew (2021-08). "Highly accurate protein structure prediction with AlphaFold". Nature. 596 (7873): 583–589. doi:10.1038/s41586-021-03819-2. ISSN 1476-4687. PMC 8371605. PMID 34265844.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: PMC format (link) - ^ a b Varadi, Mihaly; Anyango, Stephen; Deshpande, Mandar; Nair, Sreenath; Natassia, Cindy; Yordanova, Galabina; Yuan, David; Stroe, Oana; Wood, Gemma; Laydon, Agata; Žídek, Augustin; Green, Tim; Tunyasuvunakool, Kathryn; Petersen, Stig; Jumper, John (2021-11-17). "AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models". Nucleic Acids Research. 50 (D1): D439 – D444. doi:10.1093/nar/gkab1061. ISSN 0305-1048. PMC 8728224. PMID 34791371.
{{cite journal}}
: CS1 maint: PMC format (link) - ^ a b c d e f g h i j k l "THAP3 THAP domain containing 3 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-12-08.
- ^ Roussigne, Myriam; Kossida, Sophia; Lavigne, Anne-Claire; Clouaire, Thomas; Ecochard, Vincent; Glories, Alexandra; Amalric, François; Girard, Jean-Philippe (2003-02-01). "The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase". Trends in Biochemical Sciences. 28 (2): 66–69. doi:10.1016/S0968-0004(02)00013-0. ISSN 0968-0004. PMID 12575992.
- ^ "Homo sapiens THAP domain containing 3 (THAP3), transcript variant 1, mRNA". 2022-04-22.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ a b Sabogal, Alex; Lyubimov, Artem Y.; Corn, Jacob E.; Berger, James M.; Rio, Donald C. (2010-01). "THAP proteins target specific DNA sites through bipartite recognition of adjacent major and minor grooves". Nature Structural & Molecular Biology. 17 (1): 117–123. doi:10.1038/nsmb.1742. ISSN 1545-9985. PMC 2933787. PMID 20010837.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: PMC format (link) - ^ a b "Entry - *612532 - THAP DOMAIN-CONTAINING PROTEIN 3; THAP3 - OMIM". www.omim.org. Retrieved 2022-12-15.
{{cite web}}
: line feed character in|title=
at position 6 (help) - ^ a b 001182681.1 "THAP domain-containing protein 3 isoform 1 [Homo sapiens] - Protein - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-12-16.
{{cite web}}
: Check|url=
value (help) - ^ a b Fagerberg, Linn; Hallström, Björn M.; Oksvold, Per; Kampf, Caroline; Djureinovic, Dijana; Odeberg, Jacob; Habuka, Masato; Tahmasebpoor, Simin; Danielsson, Angelika; Edlund, Karolina; Asplund, Anna; Sjöstedt, Evelina; Lundberg, Emma; Szigyarto, Cristina Al-Khalili; Skogs, Marie (2014-02). "Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics". Molecular & Cellular Proteomics. 13 (2): 397–406. doi:10.1074/mcp.M113.035600.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: unflagged free DOI (link) - ^ Duff, Michael O.; Olson, Sara; Wei, Xintao; Garrett, Sandra C.; Osman, Ahmad; Bolisetty, Mohan; Plocik, Alex; Celniker, Susan E.; Graveley, Brenton R. (2015-05-21). "Genome-wide identification of zero nucleotide recursive splicing in Drosophila". Nature. 521 (7552): 376–379. doi:10.1038/nature14475. ISSN 1476-4687. PMC 4529404. PMID 25970244.
- ^ a b c d e f g h i j k l "Protein BLAST: search protein databases using a protein query". blast.ncbi.nlm.nih.gov. Retrieved 2022-12-08.
- ^ https://www.ncbi.nlm.nih.gov/nuccore/NM_001195752.2
- ^ https://www.ncbi.nlm.nih.gov/nuccore/NM_138350.4
- ^ https://www.ncbi.nlm.nih.gov/nuccore/NM_001195753.2
- ^ https://www.ncbi.nlm.nih.gov/nuccore/NM_001394496.1
- ^ https://www.ncbi.nlm.nih.gov/nuccore/NM_001394497.1
- ^ https://www.ncbi.nlm.nih.gov/nuccore/NM_001394498.1
- ^ https://www.ncbi.nlm.nih.gov/nuccore/NM_001394499.1
- ^ https://www.ncbi.nlm.nih.gov/nuccore/NM_001394500.1
- ^ a b Brendel, V; Bucher, P; Nourbakhsh, I R; Blaisdell, B E; Karlin, S (1992-03-15). "Methods and algorithms for statistical analysis of protein sequences". Proceedings of the National Academy of Sciences. 89 (6): 2002–2006. doi:10.1073/pnas.89.6.2002. ISSN 0027-8424. PMC 48584. PMID 1549558.
{{cite journal}}
: CS1 maint: PMC format (link) - ^ Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A.; Protein Identification and Analysis Tools on the Expasy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005).
- ^ https://www.ncbi.nlm.nih.gov/protein/NP_001182681.1
- ^ https://www.ncbi.nlm.nih.gov/protein/NP_612359.2
- ^ https://www.ncbi.nlm.nih.gov/protein/NP_001182682.1
- ^ https://www.ncbi.nlm.nih.gov/protein/NP_001381425.1
- ^ https://www.ncbi.nlm.nih.gov/protein/NP_001381426.1
- ^ https://www.ncbi.nlm.nih.gov/protein/NP_001381427.1
- ^ https://www.ncbi.nlm.nih.gov/protein/NP_001381428.1
- ^ https://www.ncbi.nlm.nih.gov/protein/NP_001381429.1
- ^ Liu, Wenzhong; Xie, Yubin; Ma, Jiyong; Luo, Xiaotong; Nie, Peng; Zuo, Zhixiang; Lahrmann, Urs; Zhao, Qi; Zheng, Yueyuan; Zhao, Yong; Xue, Yu; Ren, Jian (2015-06-10). "IBS: an illustrator for the presentation and visualization of biological sequences: Fig. 1". Bioinformatics. 31 (20): 3359–3361. doi:10.1093/bioinformatics/btv362. ISSN 1367-4803. PMC 4595897. PMID 26069263.
{{cite journal}}
: CS1 maint: PMC format (link) - ^ a b c Gupta, R. (2001). Prediction of glycosylation sites in proteomes: from post-translational modifications to protein function. Technical University of Denmark.
- ^ a b Blom, Nikolaj; Gammeltoft, Steen; Brunak, Søren (1999-12). "Sequence and structure-based prediction of eukaryotic protein phosphorylation sites". Journal of Molecular Biology. 294 (5): 1351–1362. doi:10.1006/jmbi.1999.3310.
{{cite journal}}
: Check date values in:|date=
(help) - ^ a b Wang, Jiyao; Youkharibache, Philippe; Marchler-Bauer, Aron; Lanczycki, Christopher; Zhang, Dachuan; Lu, Shennan; Madej, Thomas; Marchler, Gabriele H.; Cheng, Tiejun; Chong, Li Chuin; Zhao, Sarah; Yang, Kevin; Lin, Jack; Cheng, Zhiyu; Dunn, Rachel (2022). "iCn3D: From Web-Based 3D Viewer to Structural Analysis Tool in Batch Mode". Frontiers in Molecular Biosciences. 9: 831740. doi:10.3389/fmolb.2022.831740. ISSN 2296-889X. PMC 8892267. PMID 35252351.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ "PSORT II Prediction". psort.hgc.jp. Retrieved 2022-12-16.
- ^ Filtz, Theresa M.; Vogel, Walter K.; Leid, Mark (2014-2). "Regulation of transcription factor activity by interconnected, post-translational modifications". Trends in pharmacological sciences. 35 (2): 76–85. doi:10.1016/j.tips.2013.11.005. ISSN 0165-6147. PMC 3954851. PMID 24388790.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Sanghavi, Hiral M.; Mallajosyula, Sairam S.; Majumdar, Sharmistha (2019-03-05). "Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region". BMC Structural Biology. 19 (1): 4. doi:10.1186/s12900-019-0102-2. ISSN 1472-6807. PMC 6402169. PMID 30836974.
{{cite journal}}
: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link) - ^ https://www.ncbi.nlm.nih.gov/gene/55145
- ^ https://www.ncbi.nlm.nih.gov/gene/83591
- ^ https://www.ncbi.nlm.nih.gov/gene/168451
- ^ https://www.ncbi.nlm.nih.gov/gene/152815
- ^ https://www.ncbi.nlm.nih.gov/gene/80764
- ^ https://www.ncbi.nlm.nih.gov/gene/199745
- ^ https://www.ncbi.nlm.nih.gov/gene/79725
- ^ Sievers, Fabian; Wilm, Andreas; Dineen, David; Gibson, Toby J; Karplus, Kevin; Li, Weizhong; Lopez, Rodrigo; McWilliam, Hamish; Remmert, Michael; Söding, Johannes; Thompson, Julie D; Higgins, Desmond G (2011-01). "Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega". Molecular Systems Biology. 7 (1): 539. doi:10.1038/msb.2011.75. ISSN 1744-4292. PMC 3261699. PMID 21988835.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: PMC format (link) - ^ "THAP domain-containing protein 3 isoform 1 [Homo sapiens] - Protein - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-12-08.
- ^ Kumar, Sudhir; Suleski, Michael; Craig, Jack M; Kasprowicz, Adrienne E; Sanderford, Maxwell; Li, Michael; Stecher, Glen; Hedges, S Blair (2022-08-03). "TimeTree 5: An Expanded Resource for Species Divergence Times". Molecular Biology and Evolution. 39 (8): msac174. doi:10.1093/molbev/msac174. ISSN 0737-4038.
- ^ "EMBOSS Needle < Pairwise Sequence Alignment < EMBL-EBI". www.ebi.ac.uk. Retrieved 2022-12-08.
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_027803226.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_032719186.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_028016747.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_036686252.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_043850206.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_020830574.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_048680971.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_030393185.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_032619750.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_044852367.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_030041702.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_033777236.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_026873261.2
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_041712304.2
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_048872538.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_043081346.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_020386430.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_043531920.1
- ^ https://www.ncbi.nlm.nih.gov/protein/XP_032904038.1
- ^ "UniProt". www.uniprot.org. Retrieved 2022-12-16.
- ^ "IntAct Portal". www.ebi.ac.uk. Retrieved 2022-12-16.
- ^ a b "THAP3 Result Summary | BioGRID". thebiogrid.org. Retrieved 2022-12-16.
- ^ "THAP3 Gene - GeneCards | THAP3 Protein | THAP3 Antibody". www.genecards.org. Retrieved 2022-12-08.
- ^ a b Rosales, Raymond L. (2010-10-30). "X-Linked Dystonia Parkinsonism: Clinical Phenotype, Genetics and Therapeutics". Journal of Movement Disorders. 3 (2): 32–38. doi:10.14802/jmd.10009. ISSN 2005-940X. PMC 4027667. PMID 24868378.
{{cite journal}}
: CS1 maint: PMC format (link)