Talk:Heat pump
I am not sure what the potential for bias is here, but it would help us non-specialists to know what the standard for efficiency is; is there an absolute standard or is it entirely relative; is the relative efficiency of heat pumps being compared to other pumps; can we have details on relative efficiency among heat pumps (for example, what is the most efficient refrigerator; what is the least efficient refrigerator; how efficient are average household and inudstrial refrigerators -- can this be included without endorsing any specific product?) Slrubenstein
Bias, because I am a great supporter of heat pumps. Now that I have explained the efficiency, I feel the text shows that even more.
- well, bias or no, I think the more information the article presents, the better it is -- so I appreciate your additions. Nevertheless, they raise more questions. First, what does it mean that an 100 watt electric heater delivers 100 watts of heat? I thought watts = volts x amps. How does this measure "heat?" Are electric heaters really 1005 efficient? You still haven't explained how efficiency is being measured. Does an electric heater convert into the electricity into exactly the amount of heat that was originally used to generate the electricity? Is this really possible? Also, the article is still vague on how, and under what specific conditions, a heat pump can excede 100% efficiency. I am not an engineer or a physicist so the answers to these questions are not at all evident to me -- I hope you ro someone else can develop the article so it will be clearer to a mass audience, Slrubenstein
- Watts are units of power (= energy/time), and yes, you can work out electrical power from voltage x current, but that's not the basic definition of power. Efficiency is generally defined as (energy in)/(_useful_ energy out), however this does not appear to be the definition of efficiency being used in this article - nothing can be 100% efficient by this definiton, let alone more so. It might be best to quote the efficiency of a heat pump and that of an electric heater by this (widely accepted) definition, and allow comparison. (This is all complicated by the fact that in most cases the heat is the _useless_ energy, not the useful ...) -- Bth
This article should be written by someone with at least a good knowledge of basic Thermodynamics (Ch415 as we teach it here). I dont really have the time for it now. Yest if the product you want is heat the effciency can well be above 100%.
- Okay, the previous two comments just confuse me (nothing can be 100%efficient by one definition, but that isn't the definition here) -- as I said I am not a pysicist or engineer, but I assume the article is being written to help educate people just like me. The point is not to deocument an argument over how efficiency "should" be measured, the point is that the article has to explain clearly what is going on. I wish it did, but so far it does not, Slrubenstein