Trigonometric constants expressed in real radicals
Appearance
Exact constant expressions for trigonometric expressions are sometimes useful, mainly for simplifying solutions into radial forms which allow further simplification.
All values of sin/cos/tan of angles with 3 degree increments are derivable using identity expressions and values for 30 and 45 degrees.
Uses for constants
For example, the volume of a dodecahedron is:
- V = 5*e3*cos(36)/tan2(36)
- Using:
- cos(36) = ($5+1)/4
- tan(36) = $(5-2*$5)
- It can be be simplified to:
- V = e3*(15+7*sqrt(5))/4
Expressions not unique
Simplifying recursive radial expressions is nontrivial. The expressions here may look different from other variations.
Example:
- sin(18) = [sqrt(3-sqrt(5)/2)]/2 = (sqrt(5)-1)/4
- It's not obvious visually that this simplification is equivalent.
Table of constants
Shortcut: $(x) = square_root(x) = sqrt(x)
- sin(0) = 0
- cos(0) = 1
- tan(0) = 0
- sin(3) = [2*$(5+$5)*(1-$3)+$2*($5-1)*($3+1)]/16
- cos(3) = [2*$(5+$5)*(1+$3)+$2*($5-1)*($3-1)]/16
- tan(3) = [(2-$3)*(3+$5)-2]*(2-$(2*(5-$5)))/4
- sin(6) = [$(6*(5-$5))- ($5+1)]/8
- cos(6) = [$(2*(5-$5))+$3*($5-1)]/8
- tan(6) = [$(5-2*$5)*($5+1)+$3*(1-$5)]/2
- sin(9) = [-2*$(5-$5)+$2*($5+1)]/8
- cos(9) = [ 2*$(5-$5)+$2*($5+1)]/8
- tan(9) = -$(5-2*$5)*(2+$5)+($5+1)
- sin(12) = [$(2*(5+$5))-$3*($5-1)]/8
- cos(12) = [$(6*(5+$5))+ ($5-1)]/8
- tan(12) = [$(5-2*$5)*(2+$5)+($5+1)]/2
- sin(15) = $2*($3-1)/4
- cos(15) = $2*($3+1)/4
- tan(15) = 2-$3
- cotan(15) = 2+$3
- sin(18) = ($5-1)/4
- cos(18) = $(2*(5+$5))/4
- tan(18) = $(5*(5-2*$5))
- cotan(18) = $(5+2*$5)
- sin(21) = [2*$(5-$5)*($3+1)-$2*($3-1)*(1+$5)]/16
- cos(21) = [2*$(5-$5)*($3-1)+$2*($3+1)*(1+$5)]/16
- tan(21) = [$(5-2*$5)*(1+2*$3-$5)+(2+$3)*($5-3)+2]/2
- sin(22.5) = $(2-$2)/2
- cos(22.5) = $(2+$2)/2
- tan(22.5) = $2-1
- sin(24) = $(2*(5+$5))*(1-$5)+2*$3*(1+$5))/16
- cos(24) = $(6*(5+$5))*($5-1)+2*(1+$5))/16
- tan(24) = ?
- cotan(24) = (($(2*5+$5)+2*$3)*($5-1))/4
- sin(27) = ((2*$(5+$5)+$2(1-$5))/8
- cos(27) = ((2*$(5+$5)+$2($5-1))/8
- tan(27) = -$(5-2($5))+($5-1)
- sin(30) = 1/2
- cos(30) = $3/2
- tan(30) = $3/3
- sin(33) = (2*$(5+$5)*(-1+$3)+$2*($5-1)*(1+$3))/16
- cos(33) = (2*$(5+$5)*(+1+$3)+$2*($5-1)*(1-$3))/16
- tan(33) = ($(5(5-2*$5))*(-15+10*$3-7*$5+4*$15)+5*((-2+$3)*(3+$5)+2))/10
- sin(36) = $(2*(5-$5))/4
- cos(36) = ($5+1)/4
- tan(36) = $(5-2*$5)
- sin(39) = (2*$(5-$5)*(1-$3)+$2*(+1+$3)*(1+$5))/16
- cos(39) = (2*$(5-$5)*(1+$3)+$2*(-1+$3)*(1+$5))/16
- tan(39) = ($(2*(5+$5))-2)*((2-$3)*(-3+$5)+2)/4
- sin(42) = ($(6*(5-$5))*(1+$5)+2*(1-$5))/16
- cos(42) = ($(2*(5-$5))*(1+$5)+2*$3*(-1+$5))/16
- tan(42) = (-$(5-2*$5)*(3+$5)+$3*(1+$5))/2
- sin(45) = $2/2
- cos(45) = $2/2
- tan(45) = 1