List of Wenninger polyhedron models
This table contains an indexed list of the Uniform and stellated polyhedra from the book "Polyhedron Models", by Magnus J. Wenninger. ©1971
It contains the 75 nonprismatic uniform polyhedra, as well as 44 stellated forms of the convex polyhedra.
The polyhedra are grouped below in 5 tables: Regular (1-5), Semiregular (6-18), Nonconvex regular (20-22,41) , Stellations and compounds (19-66), and nonconvex uniform (67-119).
The four nonconvex regular polyhedra are listed twice because they belong to both the uniform polyhedra and stellation groupings.
Platonic solids (Regular) W1 to W5
Wenninger Index |
Name | Picture | Wythoff Symbol |
Schläfli symbol | U# | K# | V | E | F | Faces by type |
1 | Tetrahedron | ![]() |
3|2 3 | {3,3} | U01 | K06 | 4 | 6 | 4 | 4{3} |
2 | Octahedron | ![]() |
4|2 3 | ![]() {3,4} |
U05 | K10 | 6 | 12 | 8 | 8{3} |
3 | Hexahedron (Cube) | ![]() |
3|2 4 | ![]() {4,3} |
U06 | K11 | 8 | 12 | 6 | 6{4} |
4 | Icosahedron | ![]() |
5|2 3 | {3,5} | U22 | K27 | 12 | 30 | 20 | 20{3} |
5 | Dodecahedron | ![]() |
3|2 5 | {5,3} | U23 | K28 | 20 | 30 | 12 | 12{5} |
Archimedean solids (Semiregular) W6 to W18
Wenninger Index |
Name | Picture | Wythoff Symbol |
Vertex Figure | U# | K# | V | E | F | Faces by type |
6 | Truncated tetrahedron | ![]() |
2 3|3 | 3.6.6 | U02 | K07 | 12 | 18 | 8 | 4{3}+4{6} |
7 | Truncated octahedron | ![]() |
2 4|3 | 4.6.6 | U08 | K13 | 24 | 36 | 14 | 6{4}+8{6} |
8 | Truncated hexahedron | ![]() |
2 3|4 | 3.8.8 | U09 | K14 | 24 | 36 | 14 | 8{3}+6{8} |
9 | Truncated icosahedron | ![]() |
2 5|3 | 5.6.6 | U25 | K30 | 60 | 90 | 32 | 12{5}+20{6} |
10 | Truncated dodecahedron | ![]() |
2 3|5 | 3.10.10 | U26 | K31 | 60 | 90 | 32 | 20{3}+12{10} |
11 | Cuboctahedron | ![]() |
2|3 4 | ![]() 3.4.3.4 |
U07 | K12 | 12 | 24 | 14 | 8{3}+6{4} |
12 | Icosidodecahedron | ![]() |
2|3 5 | ![]() 3.5.3.5 |
U24 | K29 | 30 | 60 | 32 | 20{3}+12{5} |
13 | Small rhombicuboctahedron | ![]() |
3 4|2 | 3.4.4.4 | U10 | K15 | 24 | 48 | 26 | 8{3}+(6+12){6} |
14 | Small rhombicosidodecahedron | ![]() |
3 5|2 | 3.4.5.4 | U27 | K32 | 60 | 120 | 62 | 20{3}+30{4}+12{5} |
15 | Great rhombicuboctahedron (Rhombitruncated cuboctahedron) (Truncated cuboctahedron) |
![]() |
2 3 4| | 4.6.8 | U11 | K16 | 48 | 72 | 26 | 12{4}+8{6}+6{8} |
16 | Great rhombicosidodecahedron (Rhombitruncated icosidodecahedron) (Truncated icosidodecahedron) |
![]() |
2 3 5| | 4.6.10 | U28 | K33 | 120 | 180 | 62 | 30{4}+20{6}+12{10} |
17 | Snub cube | ![]() |
|2 3 4 | 3.3.3.3.4 | U12 | K17 | 24 | 60 | 38 | (8+24){3}+6{4} |
18 | Snub dodecahedron | ![]() |
|2 3 5 | 3.3.3.3.5 | U29 | K34 | 60 | 150 | 92 | (20+60){3}+12{5} |
Kepler-Poinsot solids (Nonconvex regular) W20,W21,W22 and W41
Wenninger Index |
Name | Picture | Wythoff Symbol |
Schläfli symbol | U# | K# | V | E | F | Faces by type |
20 | Small stellated dodecahedron | ![]() |
5|25/2 | {5/2,5} | U34 | K39 | 12 | 30 | 12 | 12{5/2} |
21 | Great dodecahedron | ![]() |
5/2|2 5 | ![]() {5,5/2} |
U35 | K40 | 12 | 30 | 12 | 12{5} |
22 | Great stellated dodecahedron | ![]() |
3|25/2 | {5/2,3} | U52 | K57 | 20 | 30 | 12 | 12{5/2} |
41 | Great icosahedron (16th stellation of icosahedron) |
![]() |
5/2|2 3 | {3,5/2} | U53 | K58 | 12 | 30 | 20 | 20{3} |
Compounds and stellations models W19 to W66
One stellation of Octahedron
Wenninger Index |
Name | Picture | Stellation facets |
2 | Octahedron (regular) |
![]() |
![]() |
19 | Stellated octahedron (Compound of two tetrahedra) |
![]() |
![]() |
Three stellations of dodecahedron
Wenninger Index |
Name | Picture | Stellation facets |
5 | Dodecahedron (regular) |
![]() |
![]() |
20 | Small stellated dodecahedron (First stellation of dodecahedron) |
![]() |
![]() |
21 | Great dodecahedron (Second stellation of dodecahedron) |
![]() |
![]() |
22 | Great stellated dodecahedron (Third stellation of dodecahedron) |
![]() |
![]() |
Three compounds
Wenninger Index |
Name | Picture | Stellation facets |
23 | Compound of five octahedra | ![]() |
|
24 | Compound of five tetrahedra | ![]() |
|
25 | Compound of ten tetrahedra | ![]() |
Seventeen stellations of icosahedron
Wenninger Index |
Name | Picture | Stellation facets | ||
4 | Icosahedron (regular) |
![]() |
![]() | ||
26 | Triakis icosahedron (First stellation of icosahedron) |
![]() |
![]() | ||
27 | Second stellation of icosahedron | ![]() |
![]() | ||
28 | Third stellation of icosahedron | ![]() |
![]() | ||
29 | Fourth stellation of icosahedron | ||||
30 | Fifth stellation of icosahedron | ||||
31 | Sixth stellation of icosahedron | ![]() |
![]() | ||
32 | Seventh stellation of icosahedron | ![]() |
![]() | ||
33 | Eighth stellation of icosahedron | ![]() |
![]() | ||
34 | Ninth stellation of icosahedron | ![]() |
![]() | ||
35 | Tenth stellation of icosahedron | ||||
36 | Eleventh stellation of icosahedron | ||||
37 | Twelfth stellation of icosahedron | ||||
38 | Thirteenth stellation of icosahedron | ||||
39 | Fourteenth stellation of icosahedron | ||||
40 | Fifteenth stellation of icosahedron | ||||
41 | Great icosahedron (Sixteenth stellation of icosahedron) |
![]() |
![]() |
||
42 | Seventeenth stellation of icosahedron | ![]() |
![]() |
Four stellations of cuboctahedron
Wenninger Index |
Name | Picture | Stellation facets Triangle |
Stellation facets Square |
0 | Cuboctahedron (regular) |
![]() |
![]() | |
43 | Compound of cube and octahedron (First stellation of cuboctahedron) |
![]() |
![]() | |
44 | Second stellation of cuboctahedron | ![]() |
![]() | |
45 | Third stellation of cuboctahedron | ![]() |
![]() | |
46 | Fourth stellation of cuboctahedron | ![]() |
![]() |
Nineteen stellations of icosidodecahedron
Uniform nonconvex solids W67 to W119
Wenninger Index |
Name | Picture | Wythoff Symbol |
Vertex Figure | U# | K# | V | E | F | Faces by type |
67 | Tetrahemihexahedron | ![]() |
3/23|2 | ![]() 4.3/2.4.3 |
U04 | K09 | 6 | 12 | 7 | 4{3}+3{4} |
68 | Octahemioctahedron | ![]() |
3/23|3 | 6.3/2.6.3 | U03 | K08 | 12 | 24 | 12 | 8{3}+4{6} |
69 | Small cubicuboctahedron | ![]() |
3/24|4 | 8.3/2.8.4 | U13 | K18 | 24 | 48 | 20 | 8{3}+6{4}+6{8} |
70 | Small ditrigonal icosidodecahedron | ![]() |
3|5/23 | (5/2.3)3 | U30 | K35 | 20 | 60 | 32 | 20{3}+12{5/2} |
71 | Small icosicosidodecahedron | ![]() |
5/23|3 | 6.5/2.6.3 | U31 | K36 | 60 | 120 | 52 | 20{3}+12{5/2}+20{6} |
72 | Small dodecicosidodecahedron | ![]() |
3/25|5 | 10.3 | U33 | K38 | 60 | 120 | 44 | 20{3}+12{5}+12{10} |
73 | Dodecadodecahedron | ![]() |
2|5/25 | (5/2.5)2 | U36 | K41 | 30 | 60 | 24 | 12{5}+12{5/2} |
74 | Small rhombidodecahedron | ![]() |
25/25| | 10.4.10/9.4/3 | U39 | K44 | 60 | 120 | 42 | 30{4}+12{10} |
75 | Truncated great dodecahedron | File:Truncated great dodecahedron.png | 25/2|5 | 10.10.5/2 | U37 | K42 | 60 | 90 | 24 | 12{5/2}+12{10} |
76 | Rhombidodecadodecahedron | ![]() |
5/25|2 | 4.5/2.4.5 | U38 | K43 | 60 | 120 | 54 | 30{4}+12{5}+12{5/2} |
77 | Great cubicuboctahedron | ![]() |
3 4|4/3 | 8/3.3.8/3.4 | U14 | K19 | 24 | 48 | 20 | 8{3}+6{4}+6{8/3} |
78 | Cubohemioctahedron | ![]() |
4/34|3 | 6.4/3.6.4 | U15 | K20 | 12 | 24 | 10 | 6{4}+4{6} |
79 | Cubitruncated cuboctahedron (Cuboctatruncated cuboctahedron) |
![]() |
4/33 4| | 8/3.6.8 | U16 | K21 | 48 | 72 | 20 | 8{6}+6{8}+6{8/3} |
80 | Ditrigonal dodecadodecahedron | ![]() |
3|5/35 | (5/3.5)3 | U41 | K46 | 20 | 60 | 24 | 12{5}+12{5/2} |
81 | Great ditrigonal dodecicosidodecahedron | ![]() |
3 5|5/3 | 10/3.3.10/3.5 | U42 | K47 | 60 | 120 | 44 | 20{3}+12{5}+12{10/3} |
82 | Small ditrigonal dodecicosidodecahedron | ![]() |
5/33|5 | 10.5/3.10.3 | U43 | K48 | 60 | 120 | 44 | 20{3}+12{5/2}+12{10} |
83 | Icosidodecadodecahedron | ![]() |
5/35|3 | 6.5/3.6.5 | U44 | K49 | 60 | 120 | 44 | 12{5}+12{5/2}+20{6} |
84 | Icositruncated dodecadodecahedron (Icosidodecatruncated icosidodecahedron) |
![]() |
5/33 5| | 10/3.6.10 | U45 | K50 | 120 | 180 | 44 | 20{6}+12{10}+12{10/3} |
85 | Uniform great rhombicuboctahedron (Quasirhombicuboctahedron) |
![]() |
3/24|2 | 4.3/2.4.4 | U17 | K22 | 24 | 48 | 26 | 8{3}+(6+12){4} |
86 | Small rhombihexahedron | ![]() |
3/22 4| | 4.8.4/3.8 | U18 | K23 | 24 | 48 | 18 | 12{4}+6{8} |
87 | Great ditrigonal icosidodecahedron | ![]() |
3/2|3 5 | (5.3.5.3.5.3)/2 | U47 | K52 | 20 | 60 | 32 | 20{3}+12{5} |
88 | Great icosicosidodecahedron | ![]() |
3/25|3 | 6.3/2.6.5 | U48 | K53 | 60 | 120 | 52 | 20{3}+12{5}+20{6} |
89 | Small icosihemidodecahedron | ![]() |
3/23|5 | 10.3/2.10.3 | U49 | K54 | 30 | 60 | 26 | 20{3}+6{10} |
90 | Small dodecicosahedron | ![]() |
3/23 5| | 10.6.10/5 | U50 | K55 | 32 | 60 | 120 | 20{6}+12{10} |
91 | Small dodecahemidodecahedron | ![]() |
5/45|5 | 10.5/4.10.5 | U51 | K56 | 30 | 60 | 18 | 12{5}+6{10} |
92 | Stellated truncated hexahedron (Quasitruncated hexahedron) |
![]() |
2 3|4/3 | 8/3.8/3.3 | U19 | K24 | 24 | 36 | 14 | 8{3}+6{8/3} |
93 | Great truncated cuboctahedron (Quasitruncated cuboctahedron) |
![]() |
4/32 3| | 8/3.4.6 | U20 | K25 | 48 | 72 | 26 | 12{4}+8{6}+6{8/3} |
94 | Great icosidodecahedron | ![]() |
2|5/23 | (5/2.3)2 | U54 | K59 | 30 | 60 | 32 | 20{3}+12{5/2} |
95 | Great truncated icosahedron | ![]() |
25/2|3 | 6.6.5/2 | U55 | K60 | 60 | 90 | 32 | 12{5/2}+20{6} |
96 | Rhombicosahedron | ![]() |
25/23| | 6.4.6/5.4/3 | U56 | K61 | 60 | 120 | 50 | 30{4}+20{6} |
97 | Small stellated truncated dodecahedron (Quasitruncated small stellated dodecahedron) |
![]() |
2 5|5/3 | 10/3.10/3.5 | U58 | K63 | 60 | 90 | 24 | 12{5}+12{10/3} |
98 | Truncated dodecadodecahedron (Quasitruncated dodecahedron) |
![]() |
5/32 5| | 10/3.4.10 | U59 | K64 | 120 | 180 | 54 | 30{4}+12{10}+12{10/3} |
99 | Great dodecicosidodecahedron | ![]() |
5/23|5/3 | 10/3.5/2.10/3.3 | U61 | K66 | 60 | 120 | 44 | 20{3}+12{5/2}+12{10/3 } |
100 | Small dodecahemicosahedron | ![]() |
5/35/2|3 | 6.5/3.6.5/2 | U62 | K67 | 30 | 60 | 22 | 12{5/2}+10{6} |
101 | Great dodecicosahedron | ![]() |
5/35/23| | 6.10/3.6/5.10/7 | U63 | K68 | 60 | 120 | 32 | 20{6}+12{10/3} |
102 | Great dodecahemicosahedron | ![]() |
5/45|3 | 6.5/4.6.5 | U65 | K70 | 30 | 60 | 22 | 12{5}+10{6} |
103 | Great rhombihexahedron | ![]() |
4/33/22| | 4.8/3.4/3.8/5 | U21 | K26 | 24 | 48 | 18 | 12{4}+6{8/3} |
104 | Great stellated truncated dodecahedron (Quasitruncated great stellated dodecahedron) |
![]() |
2 3|5/3 | 10/3.10/3.3 | U66 | K71 | 60 | 90 | 32 | 20{3}+12{10/3} |
105 | Uniform great rhombicosidodecahedron (Quasirhombicosidodecahedron) |
![]() |
5/33|2 | 4.5/3.4.3 | U67 | K72 | 60 | 120 | 62 | 20{3}+30{4}+12{5/2} |
106 | Great icosihemidodecahedron | ![]() |
3 3|5/3 | 10/3.3/2.10/3.3 | U71 | K76 | 30 | 60 | 26 | 20{3}+6{10/3} |
107 | Great dodecahemidodecahedron | ![]() |
5/35/2|5/3 | 10/3.5/3.10/3.5/2 | U70 | K75 | 30 | 60 | 18 | 12{5/2}+6{10/3} |
108 | Great truncated icosidodecahedron (Great quasitruncated icosidodecahedron) |
![]() |
5/32 3| | 10/3.4.6 | U68 | K73 | 120 | 180 | 62 | 30{4}+20{6}+12{10/3} |
109 | Great rhombidodecahedron | ![]() |
3/25/32| | 4.10/3.4/3.10/7 | U73 | K78 | 60 | 120 | 42 | 30{4}+12{10/3} |
110 | Small snub icosicosidodecahedron | ![]() |
|5/23 3 | 3.3.3.3.3.5/2 | U32 | K37 | 60 | 180 | 112 | (40+60){3}+12{5/2} |
111 | Snub dodecadodecahedron | ![]() |
|25/25 | 3.3.5/2.3.5 | U40 | K45 | 60 | 150 | 84 | 60{3}+12{5}+12{5/2} |
112 | Snub icosidodecadodecahedron | ![]() |
|5/33 5 | 3.3.3.3.5.5/3 | U46 | K51 | 60 | 180 | 104 | (20+6){3}+12{5}+12{5/2} |
113 | Great inverted snub icosidodecahedron | ![]() |
|5/32 3 | 3.3.3.3.5/3 | U69 | K74 | 60 | 150 | 92 | (20+60){3}+12{5/2} |
114 | Inverted snub dodecadodecahedron | ![]() |
|5/32 5 | 3.5/3.3.3.5 | U60 | K65 | 60 | 150 | 84 | 60{3}+12{5}+12{5/2} |
115 | Great snub dodecicosidodecahedron | ![]() |
|5/35/23 | 3.5/3.3.5/2.3.3 | U64 | K69 | 60 | 80 | 104 | (20+60){3}+(12+12){5/2} |
116 | Great snub icosidodecahedron | ![]() |
|25/25/2 | 3.3.3.3.5/2 | U57 | K62 | 60 | 150 | 92 | (20+60){3}+12{5/2} |
117 | Great retrosnub icosidodecahedron | ![]() |
|3/25/32 | (3.3.3.3.5/3)/2 | U74 | K79 | 60 | 150 | 92 | (20+60){3}+12{5/2} |
118 | Small retrosnub icosicosidodecahedron | ![]() |
|3/23/25/2 | (3.3.3.3.3.5/3)/2 | U72 | K77 | 180 | 60 | 112 | (40+60){3}+12{5/2} |
119 | Great dirhombicosidodecahedron | ![]() |
|3/25/335/2 | ![]() (4.5/3.4.3.4.5/2.4.3/2)/2 |
U75 | K80 | 60 | 240 | 124 | 40{3}+60{4}+24{5/2} |