Jump to content

Potassium dichromate

From Wikipedia, the free encyclopedia
(Redirected from Bichromate of potash)
Potassium dichromate
Potassium dichromate
Potassium dichromate
Unit cell of potassium dichromate
Unit cell of potassium dichromate
Names
IUPAC name
Potassium dichromate(VI)
Other names
  • potassium bichromate
  • bichromate of potash
  • dipotassium dichromate
  • dichromic acid, dipotassium salt
  • chromic acid, dipotassium salt
  • lópezite[1]
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.029.005 Edit this at Wikidata
EC Number
  • 231-906-6
RTECS number
  • HX7680000
UNII
UN number 3288
  • InChI=1S/2Cr.2K.7O/q;;2*+1;;;;;;2*-1 checkY
    Key: KMUONIBRACKNSN-UHFFFAOYSA-N checkY
  • [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O
Properties
K2Cr2O7
Molar mass 294.185 g/mol
Appearance red-orange crystalline solid
Odor odorless
Density 2.676 g/cm3, solid
Melting point 398 °C (748 °F; 671 K)
Boiling point 500 °C (932 °F; 773 K) decomposes
  • 4.9 g/100 mL (0 °C (32 °F))
  • 13 g/100 mL (20 °C (68 °F))
  • 102 g/100 mL (100 °C (212 °F))
Solubility insoluble in alcohol, acetone.
1.738
Structure
Triclinic (α-form, <241.6 °C)
Tetrahedral (for Cr)
Thermochemistry
219 J/mol[2]
291.2 J/(K·mol)
−2033 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
carcinogenic,[4] corrosive
GHS labelling:
GHS03: OxidizingGHS05: CorrosiveGHS06: ToxicGHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard[3]
H272, H301, H312, H314, H317, H330, H334, H335, H340, H350, H360, H372, H410[3]
P201, P202, P210, P220, P221, P260, P264, P270, P271, P272, P273, P280, P284, P301+P310+P330, P301+P330+P331, P303+P361+P353, P304+P340+P310, P305+P351+P338+P310, P308+P313, P333+P313, P342+P311, P363, P370+P378, P391, P403+P233, P405, P501[3]
NFPA 704 (fire diamond)
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
25 mg/kg (oral, rat)[5]
Safety data sheet (SDS) ICSC 1371
Related compounds
Other anions
Potassium chromate
Potassium molybdate
Potassium tungstate
Other cations
Ammonium dichromate
Sodium dichromate
Related compounds
Potassium permanganate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Potassium dichromate is the inorganic compound with the formula K2Cr2O7. An orange solid, it is used in diverse laboratory and industrial applications. As with all hexavalent chromium compounds, it is chronically harmful to health. It is a crystalline ionic solid with a very bright, red-orange color. The salt is popular in laboratories because it is not deliquescent, in contrast to the more industrially relevant salt sodium dichromate.[6]

Production

[edit]

Potassium dichromate is usually prepared by the reaction of sodium dichromate and potassium chloride.[6] Alternatively, it can be also obtained from potassium chromate by roasting chromite ore with potassium hydroxide:

FeCr2O4 + 2 KOH + 1.5 O2 → K2Cr2O7 + Fe(OH)2

Structure

[edit]

The solid crystallizes as two polymorphs. These salts are soluble in water, and the dissolution process it ionizes, releasing Cr2O2−7. Thus in aqueous solution, it is the dichromate ion that matters in terms of chemical reactions and environmental impact. This anion is a corner-shared bitetrahedron, resembling pyrophosphate.

Reactions

[edit]

Potassium dichromate is an oxidising agent in organic chemistry. It is milder and more selective than potassium permanganate. It is used to oxidize alcohols. It converts primary alcohols into aldehydes and, under more forcing conditions, into carboxylic acids. In contrast, potassium permanganate tends to give carboxylic acids as the sole products. Secondary alcohols are converted into ketones. For example, menthone may be prepared by oxidation of menthol when treated with acidified solution of dichromate.[7] Tertiary alcohols cannot be oxidized.

When heated strongly, it decomposes with the evolution of oxygen.[citation needed]

4 K2Cr2O7 → 4 K2CrO4 + 2 Cr2O3 + 3 O2

When an alkali is added to an orange-red solution containing dichromate ions, a yellow solution is obtained due to the formation of chromate ions (CrO2−4). For example, potassium chromate is produced industrially using potassium carbonate:[6]

K2Cr2O7 + K2CO3 → 2 K2CrO4 + CO2

Treatment with cold sulfuric acid gives red crystals of chromic anhydride (chromium trioxide, CrO3):[citation needed]

K2Cr2O7 + 2 H2SO4 → 2 CrO3 + 2 KHSO4 + H2O

On heating with concentrated acid, oxygen is evolved:[citation needed]

2 K2Cr2O7 + 8 H2SO4 → 2 K2SO4 + 2 Cr2(SO4)3 + 8 H2O + 3 O2

Potassium dichromate is readily reduced by sulfur dioxide:[8]

K2Cr2O7 + H2SO4 + 3 SO2 → K2SO4 + Cr2(SO4)3

In addition to providing a route to chromium(III) sulfate, this reaction was once the basis of a test for sulfur dioxide.

Niche or archaic uses

[edit]

Potassium dichromate has few major applications, as the sodium salt is dominant industrially. The main use is as a precursor to potassium chrome alum, used in leather tanning.[6][9]

Photography and printing

[edit]

In 1839, Mungo Ponton discovered that paper treated with a solution of potassium dichromate was visibly tanned by exposure to sunlight, the discoloration remaining after the potassium dichromate had been rinsed out. In 1852, Henry Fox Talbot discovered that exposure to ultraviolet light in the presence of potassium dichromate hardened organic colloids such as gelatin and gum arabic, making them less soluble.

These discoveries soon led to the carbon print, gum bichromate, and other photographic printing processes based on differential hardening. Typically, after exposure, the unhardened portion was rinsed away with warm water, leaving a thin relief that either contained a pigment included during manufacture or was subsequently stained with a dye. Some processes depended on the hardening only, in combination with the differential absorption of certain dyes by the hardened or unhardened areas. Because some of these processes allowed the use of highly stable dyes and pigments, such as carbon black, prints with an extremely high degree of archival permanence and resistance to fading from prolonged exposure to light could be produced.

Dichromated colloids were also used as photoresists in various industrial applications, most widely in the creation of metal printing plates for use in photomechanical printing processes.

Chromium intensification or Photochromos uses potassium dichromate together with equal parts of concentrated hydrochloric acid diluted down to approximately 10% v/v to treat weak and thin negatives of black and white photograph roll. This solution reconverts the elemental silver particles in the film to silver chloride. After thorough washing and exposure to actinic light, the film can be redeveloped to its end-point yielding a stronger negative which is able to produce a more satisfactory print.

A potassium dichromate solution in sulfuric acid can be used to produce a reversal negative (that is, a positive transparency from a negative film). This is effected by developing a black and white film but allowing the development to proceed more or less to the end point. The development is then stopped by copious washing and the film then treated in the acid dichromate solution. This converts the silver metal to silver sulfate, a compound that is insensitive to light. After thorough washing and exposure to actinic light, the film is developed again allowing the previously unexposed silver halide to be reduced to silver metal. The results obtained can be unpredictable, but sometimes excellent results are obtained producing images that would otherwise be unobtainable. This process can be coupled with solarisation so that the end product resembles a negative and is suitable for printing in the normal way.

Cr(VI) compounds have the property of tanning animal proteins when exposed to strong light. This quality is used in photographic screen-printing.

In screen-printing a fine screen of bolting silk or similar material is stretched taut onto a frame similar to the way canvas is prepared before painting. A colloid sensitized with a dichromate is applied evenly to the taut screen. Once the dichromate mixture is dry, a full-size photographic positive is attached securely onto the surface of the screen, and the whole assembly exposed to strong light – times vary from 3 minutes to a half an hour in bright sunlight – hardening the exposed colloid. When the positive is removed, the unexposed mixture on the screen can be washed off with warm water, leaving the hardened mixture intact, acting as a precise mask of the desired pattern, which can then be printed with the usual screen-printing process.

Analytical reagent

[edit]

Because it is non-hygroscopic, potassium dichromate was a common reagent in classical "wet tests" in analytical chemistry.

Ethanol determination

[edit]

Ethanol in a sample can be assayed using potassium dichromate, which oxidizes the ethanol to acetic acid:

3 C2H5OH + 2 K2Cr2O7 + 8 H2SO4 → 3 CH3COOH + 2 Cr2(SO4)3 + 2 K2SO4 + 11 H2O

This reaction was once used in breathalyzer tests. When alcohol vapor makes contact with the orange dichromate-coated crystals, the color changes to Cr(III) green is directly related to the level of alcohol in the suspect's breath.

Aldehyde test

[edit]

In an aqueous solution the color change exhibited can be used to test for distinguishing aldehydes from ketones. Aldehydes reduce dichromate from the +6 to the +3 oxidation state, changing the solution color from orange to green. A ketone will show no such change because it cannot be oxidized further, and so the solution will remain orange.[citation needed]

Wood treatment

[edit]

Potassium dichromate is used to stain certain types of wood by darkening the tannins in the wood. It produces deep, rich browns that cannot be achieved with modern color dyes. It is a particularly effective treatment on mahogany.[10]

Natural occurrence

[edit]
A ~10 mm crystal of potassium dichromate in the same form as the mineral lópezite

Potassium dichromate occurs naturally as the rare mineral lópezite. It has only been reported as vug fillings in the nitrate deposits of the Atacama Desert of Chile and in the Bushveld igneous complex of South Africa.[11]

Safety

[edit]

Potassium dichromate is a prevalent allergen in patch tests (4.8%). Its presence in cement can cause contact dermatitis in construction workers after extended exposure.[12][13] In general, it is one of the most common causes of chromium dermatitis.[14] Aquatic organisms are vulnerable to poisoning by dichromate salts, but far less so than organic pollutants.[15]

As with other Cr(VI) compounds, potassium dichromate is carcinogenic.[16] The compound is also corrosive and exposure may damage eyes[17] Human exposure further causes impaired fertility.[citation needed]

References

[edit]
  1. ^ "POTASSIUM DICHROMATE LISTING" (PDF). US EPA. 2015-07-23.
  2. ^ Binnewies, M.; Milke, E. (2002). Thermochemical Data of Elements and Compounds (2 ed.). Weinheim: Wiley-VCH. p. 405. ISBN 978-3-527-30524-7.
  3. ^ a b c Sigma-Aldrich Co., Potassium dichromate.
  4. ^ Like all compounds of hexavalent chromium, potassium dichromate is carcinogenic
  5. ^ Chambers, Michael. "ChemIDplus - 7778-50-9 - KMUONIBRACKNSN-UHFFFAOYSA-N - Potassium dichromate - Similar structures search, synonyms, formulas, resource links, and other chemical information".
  6. ^ a b c d Gerd Anger, Jost Halstenberg, Klaus Hochgeschwender, Christoph Scherhag, Ulrich Korallus, Herbert Knopf, Peter Schmidt, Manfred Ohlinger, "Chromium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi:10.1002/14356007.a07_067
  7. ^ L. T. Sandborn. "l-Menthone". Organic Syntheses; Collected Volumes, vol. 1, p. 340.
  8. ^ F. Hein and S. Herzog (1963). "Chromium, Molybdenum, Tungsten, Uranium". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2. NY, NY: Academic Press. p. 1366.
  9. ^ M. Saha; C. R. Srinivas; S. D. Shenoy; C. Balachandran (May 1993). "Footwear dermatitis". Contact Dermatitis. 28 (5): 260–264. doi:10.1111/j.1600-0536.1993.tb03428.x. PMID 8365123. S2CID 23159708.
  10. ^ Jewitt, Jeff (1997). Hand-Applied Finishes. Newtown, Connecticut: Taunton Press. ISBN 978-1-56158-154-2.
  11. ^ "Lópezite: Lópezite mineral information and data".
  12. ^ Sprung, Siegbert (2008). "Cement". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a05_489.pub2. ISBN 978-3-527-30385-4.
  13. ^ Hedberg, Yolanda S.; Gumulka, Martin; Lind, Marie-Louise; Matura, Mihály; Lidén, Carola (2014). "Severe occupational chromium allergy despite cement legislation". Contact Dermatitis. 70 (5): 321–323. doi:10.1111/cod.12203. PMID 24731090.
  14. ^ Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten S.; Zachariae, Claus; Menné, Torkil; Thyssen, Jacob P. (2015). "Chromium allergy and dermatitis: Prevalence and main findings". Contact Dermatitis. 73 (5): 261–280. doi:10.1111/cod.12436. PMID 26104877.
  15. ^ Weltje, Lennart; Simpson, Peter; Gross, Melanie; Crane, Mark; Wheeler, James R. (2013). "Comparative Acute and Chronic Sensitivity of Fish and Amphibians: A Critical Review of Data". Environmental Toxicology and Chemistry. 32 (5): 984–994. Bibcode:2013EnvTC..32..984W. doi:10.1002/etc.2149. PMID 23381988.
  16. ^ IARC (2012) [17-24 March 2009]. Volume 100C: Arsenic, Metals, Fibres, and Dusts (PDF). Lyon: International Agency for Research on Cancer. ISBN 978-92-832-0135-9. Retrieved 2020-01-05. There is sufficient evidence in humans for the carcinogenicity of chromium (VI) compounds. Chromium (VI) compounds cause cancer of the lung. Also positive associations have been observed between exposure to Chromium (VI) compounds and cancer of the nose and nasal sinuses. There is sufficient evidence in experimental animals for the carcinogenicity of chromium (VI) compounds. Chromium (VI) compounds are carcinogenic to humans (Group 1).
  17. ^ "Potassium dichromate MSDS". JT Baker.
[edit]