Jump to content

CoRoT-6

Coordinates: Sky map 18h 44m 17.42s, +6° 39′ 47.95″
From Wikipedia, the free encyclopedia
(Redirected from COROT-6)
CoRoT-6
Observation data
Epoch J2000      Equinox J2000
Constellation Ophiuchus[1]
Right ascension 18h 44m 17.4079s[2]
Declination +06° 39′ 47.513″[2]
Apparent magnitude (V) 13.9[3]
Characteristics
Evolutionary stage main sequence[2]
Spectral type F5V[4]
Astrometry
Proper motion (μ) RA: 5.438±0.017[2] mas/yr
Dec.: 1.889±0.016[2] mas/yr
Parallax (π)1.5641±0.0163 mas[2]
Distance2,090 ± 20 ly
(639 ± 7 pc)
Details
Mass1.1[3] M
Radius1.02[3] R
Luminosity1.4[2] L
Surface gravity (log g)428[2] cgs
Temperature5,922[2] K
Metallicity [Fe/H]−0.20[5] dex
Rotational velocity (v sin i)7.5[6] km/s
Age4.9[2] Gyr
Other designations
CoRoT-Exo-6[3]
Database references
SIMBADdata
Exoplanet Archivedata

CoRoT-6 is a magnitude 13.9 star located in the Ophiuchus constellation.[7]

Location and properties

[edit]

The star has a radius of about 102% of the Sun and a mass of about 110% of the Sun.[3] It is a main sequence F type star a little larger and hotter than the Sun.

Planetary system

[edit]

The star is orbited by one known extrasolar planet identified as CoRoT-6b. The discovery was made by the CoRoT program using the transit method.[3]

The CoRoT-6 planetary system[7]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 2.96 MJ 0.0855 8.887 < 0.1 1.166 RJ

References

[edit]
  1. ^ Roman, Nancy G. (1987). "Identification of a constellation from a position". Publications of the Astronomical Society of the Pacific. 99 (617): 695. Bibcode:1987PASP...99..695R. doi:10.1086/132034. Constellation record for this object at VizieR.
  2. ^ a b c d e f g h i j Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  3. ^ a b c d e f H. Rauer, M. Fridlund (2009). "CoRoT's exoplanet harvest" (PDF). First CoRoT International Symposium. Archived from the original (PDF) on 2011-07-20. Retrieved 2009-04-19.
  4. ^ Ehrenreich, D.; Désert, J.-M. (2011). "Mass-loss rates for transiting exoplanets". Astronomy & Astrophysics. 529: A136. arXiv:1103.0011. Bibcode:2011A&A...529A.136E. doi:10.1051/0004-6361/201016356. S2CID 119302960.
  5. ^ Chen, Di-Chang; Xie, Ji-Wei; Zhou, Ji-Lin; Dong, Subo; Liu, Chao; Wang, Hai-Feng; Xiang, Mao-Sheng; Huang, Yang; Luo, Ali; Zheng, Zheng (2021). "Planets Across Space and Time (PAST). I. Characterizing the Memberships of Galactic Components and Stellar Ages: Revisiting the Kinematic Methods and Applying to Planet Host Stars". The Astrophysical Journal. 909 (2): 115. arXiv:2102.09424. Bibcode:2021ApJ...909..115C. doi:10.3847/1538-4357/abd5be. S2CID 231951508.
  6. ^ Damiani, C.; Lanza, A. F. (2015). "Evolution of angular-momentum-losing exoplanetary systems. Revisiting Darwin stability". Astronomy and Astrophysics. 574. arXiv:1411.3802. Bibcode:2015A&A...574A..39D. doi:10.1051/0004-6361/201424318. S2CID 54727372.
  7. ^ a b Fridlund, M.; et al. (2010). "Transiting exoplanets from the CoRoT space mission. IX. CoRoT-6b: a transiting 'hot Jupiter' planet in an 8.9d orbit around a low-metallicity star". Astronomy and Astrophysics. 512. A14. arXiv:1001.1426v1. Bibcode:2010A&A...512A..14F. doi:10.1051/0004-6361/200913767. S2CID 54014374.