Jump to content

Higher alkane

From Wikipedia, the free encyclopedia
(Redirected from Docosane)
Tetracosane is a representative higher alkane

Higher alkanes are alkanes with a high number of carbon atoms. It is common jargon.[1] One definition says higher alkanes are alkanes having nine or more carbon atoms. Thus, according to this definition, nonane is the lightest higher alkane.[2] As pure substances, higher alkanes are rarely significant, but they are major components of useful lubricants and fuels.[3]

Synthesis

[edit]

The preparation of specific long-chain hydrocarbons typically involves manipulations of long chain precursors or the coupling of two medium-chain components. For the first case, fatty acids can be a source of higher alkanes via decarboxylation reaction. Such processes have been investigated as a route to biodiesel.[4]

Fatty acid esters and fatty acid nitriles react with long chain Grignard reagents to give, after suitable workup, long-chain ketones. The Wolff-Kishner Reaction provides a way to remove the ketone functionality, giving long-chain hydrocarbons.[1]

Even-numbered, long-chain hydrocarbons can also be synthesized through electrolysis[5] and the Wurtz reactions of alkyl bromides.

Occurrence

[edit]

Higher alkanes can also be isolated and purified from natural or synthetic mixtures. Coal tar is a traditional source of mixtures of long-chain hydrocarbons.[3] Careful fractionation, first using urea clathratesto remove branched hydrocarbons, and then distillation, produces pure n-hydrocarbons from petroleum.[6]

Regarding synthetic sources, the Fischer-Tropsch process (or FT process) produces a mixture of hydrocarbons by the hydrogenation of carbon monoxide. The products obtained are liquid hydrocarbons and waxy solids, mostly n-paraffins. The liquid fraction ranges from C6 to C20, while the solid fraction consists of hydrocarbons above C21.[7]

Bioactivity

[edit]

Some branched higher alkanes are insect pheromones. 9- and 7-Methyltricosanes are active for ladybird beetles (Adalia bipunctata).[8] The emerald ash borer (Agrilus planipennis Fairmaire) responds to 9-methylpentacosane.[9] Female Asian long-horned beetles Anoplophora glabripennis, which are very damaging, secrete 2-methyldocosane.[10]

Reactions

[edit]

Higher alkanes in general are relatively inert, just like low molecular weight alkanes they can react with oxygen and start a combustion reaction. They can undergo crracking in the presence of alumina or silica catalysts, forming lower alkanes and alkenes.

Uses

[edit]

Alkanes from nonane to hexadecane (those alkanes with nine to sixteen carbon atoms) are liquids of higher viscosity, which are less suitable for use in gasoline. They form instead the major part of diesel, kerosene, and aviation fuel. Diesel fuels are characterised by their cetane number, cetane being an older name for hexadecane. However the higher melting points of these alkanes can cause problems at low temperatures and in polar regions, where the fuel becomes too thick to flow correctly. Mixtures of the normal alkanes are used as boiling point standards for simulated distillation by gas chromatography.[11]

Alkanes from hexadecane upwards form the most important components of fuel oil and lubricating oil. In latter function they work at the same time as anti-corrosive agents, as their hydrophobic nature means that water cannot reach the metal surface. Many solid alkanes find use as paraffin wax, used for lubrication, electrical insulation, and candles. Paraffin wax should not be confused with beeswax, which consists primarily of esters.

Alkanes with a chain length of approximately 35 or more carbon atoms are found in bitumen (asphalt), used (for example) in road surfacing. However, the higher alkanes have little value and are usually split into lower alkanes by cracking.

Names

[edit]

Some alkanes have non-IUPAC trivial names:

Properties

[edit]

Nonane is the lightest alkane to have a flash point above 25 °C, and is classified as flammable under the US National Library of Medicine. [13]

The properties listed here refer to the straight-chain alkanes (or: n-alkanes).

Nonane to hexadecane

[edit]

This group of n-alkanes is generally liquid under standard conditions.[3]

Nonane Decane Undecane Dodecane Tridecane Tetradecane Pentadecane Hexadecane
Formula C9H20 C10H22 C11H24 C12H26 C13H28 C14H30 C15H32 C16H34
CAS number [111-84-2] [124-18-5] [1120-21-4] [112-40-3] [629-50-5] [629-59-4] [629-62-9] [544-76-3]
Molar mass (g/mol) 128.26 142.29 156.31 170.34 184.37 198.39 212.42 226.45
Melting point (°C) −53.5 −29.7 −25.6 −9.6 −5.4 5.9 9.9 18.2
Boiling point (°C) 150.8 174.1 195.9 216.3 235.4 253.5 270.6 286.8
Density (g/ml at 20 °C) 0.71763 0.73005 0.74024 0.74869 0.75622 0.76275 0.76830 0.77344
Viscosity (cP at 20 °C) 0.7139 0.9256 1.185 1.503 1.880 2.335 2.863 3.474
Flash point (°C) 31 46 60 71 79 99 132 135
Autoignition
temperature
(°C)
205 210 205 235 201
Explosive limits 0.9–2.9% 0.8–2.6% 0.45–6.5%

Heptadecane to tetracosane

[edit]

From this group on, the n-alkanes are generally solid at standard conditions.

Heptadecane Octadecane Nonadecane Eicosane Heneicosane Docosane Tricosane Tetracosane
Formula C17H36 C18H38 C19H40 C20H42 C21H44 C22H46 C23H48 C24H50
CAS number [629-78-7] [593-45-3] [629-92-5] [112-95-8] [629-94-7] [629-97-0] [638-67-5] [646-31-1]
Molar mass (g/mol) 240.47 254.50 268.53 282.55 296.58 310.61 324.63 338.66
Melting point (°C) 21 28–30 32–34 36.7 40.5 42 48–50 52
Boiling point (°C) 302 317 330 342.7 356.5 224 at 2 kPa 380 391.3
Density (g/ml) 0.777 0.777 0.786 0.7886 0.792 0.778 0.797 0.797
Flash point (°C) 148 166 168 176

Pentacosane to triacontane

[edit]
Pentacosane Hexacosane Heptacosane Octacosane Nonacosane Triacontane
Formula C25H52 C26H54 C27H56 C28H58 C29H60 C30H62
CAS number [629-99-2] [630-01-3] [593-49-7] [630-02-4] [630-03-5] [638-68-6]
Molar mass (g/mol) 352.69 366.71 380.74 394.77 408.80 422.82
Melting point (°C) 54 56.4 59.5 64.5 63.7 65.8
Boiling point (°C) 401 412.2 422 431.6 440.8 449.7
Density (g/ml) 0.801 0.778 0.780 0.807 0.808 0.810

Hentriacontane to hexatriacontane

[edit]
Hentriacontane Dotriacontane Tritriacontane Tetratriacontane Pentatriacontane Hexatriacontane
Formula C31H64 C32H66 C33H68 C34H70 C35H72 C36H74
CAS number [630-04-6] [544-85-4] [630-05-7] [14167-59-0] [630-07-9] [630-06-8]
Molar mass (g/mol) 436.85 450.88 464.90 478.93 492.96 506.98
Melting point (°C) 67.9 69 70–72 72.6 75 74–76
Boiling point (°C) 458 467 474 285.4 at 0.4 kPa 490 265 at 130 Pa
Density (g/ml) 0.781 at 68 °C[14] 0.812 0.811 0.812 0.813 0.814

Heptatriacontane to dotetracontane

[edit]
Heptatriacontane Octatriacontane Nonatriacontane Tetracontane Hentetracontane Dotetracontane
Formula C37H76 C38H78 C39H80 C40H82 C41H84 C42H86
CAS number [7194-84-5] [7194-85-6] [7194-86-7] [4181-95-7] [7194-87-8] [7098-20-6]
Molar mass (g/mol) 520.99 535.03 549.05 563.08 577.11 591.13
Melting point (°C) 77 79 78 84 83 86
Boiling point (°C) 504.14 510.93 517.51 523.88 530.75 536.07
Density (g/ml) 0.815 0.816 0.817 0.817 0.818 0.819

Tritetracontane to octatetracontane

[edit]
Tritetracontane Tetratetracontane Pentatetracontane Hexatetracontane Heptatetracontane Octatetracontane
Formula C43H88 C44H90 C45H92 C46H94 C47H96 C48H98
CAS Number [7098-21-7] [7098-22-8] [7098-23-9] [7098-24-0] [7098-25-1] [7098-26-2]
Molar mass (g/mol) 605.15 619.18 633.21 647.23 661.26 675.29
Boiling point (°C) 541.91 547.57 553.1 558.42 563.6 568.68
Density (g/ml) 0.82 0.82 0.821 0.822 0.822 0.823

Nonatetracontane to tetrapentacontane

[edit]
Nonatetracontane Pentacontane Henpentacontane Dopentacontane Tripentacontane Tetrapentacontane
Formula C49H100 C50H102 C51H104 C52H106 C53H108 C54H110
CAS number [7098-27-3] [6596-40-3] [7667-76-7] [7719-79-1] [7719-80-4] [5856-66-6]
Molar mass (g/mol) 689.32 703.34 717.37 731.39 745.42 759.45
Boiling point (°C) 573.6 578.4 583 587.6 592 596.38
Density (g/ml) 0.823 0.824 0.824 0.825 0.825 0.826

Pentapentacontane to hexacontane

[edit]
Pentapentacontane Hexapentacontane Heptapentacontane Octapentacontane Nonapentacontane Hexacontane
Formula C55H112 C56H114 C57H116 C58H118 C59H120 C60H122
CAS number [5846-40-2] [7719-82-6] [5856-67-7] [7667-78-9] [7667-79-0] [7667-80-3]
Molar mass (g/mol) 773.48 787.50 801.53 815.58 829.59 843.6
Boiling point (°C) 600.6 604.7 ? 612.6 ? 620.2
Density (g/ml) 0.826 0.826 ? 0.827 ? 0.827

See also

[edit]

References

[edit]
  1. ^ a b Whitmore, Frank C.; Herr, C. H.; Clarke, D. G.; Rowland, C. S.; Schiessler, Robert W. (1945). "Higher Hydrocarbons. III.2 the Wolff-Kishner Reaction". Journal of the American Chemical Society. 67 (12): 2059–2061. Bibcode:1945JAChS..67.2059W. doi:10.1021/ja01228a001.
  2. ^ "Higher alkanes". Wartsila.com. Retrieved 2025-05-06.
  3. ^ a b c Schmidt, Roland; Griesbaum, Karl; Behr, Arno; Biedenkapp, Dieter; Voges, Heinz-Werner; Garbe, Dorothea; Paetz, Christian; Collin, Gerd; Mayer, Dieter; Höke, Hartmut (2014). "Hydrocarbons". Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–74. doi:10.1002/14356007.a13_227.pub3. ISBN 978-3-527-30673-2.
  4. ^ Silva, Maria do S. B. da; Araujo, Jhudson G. L. de; Bento, Júlia C. C. V.; Azevedo, Amanda M. de; Souto, Carlos R. O.; Anjos, Aécia S. D. dos; Araújo, Aruzza M. M. de; Silva, Djalma R. da; Menezes, Fabrício G.; Gondim, Amanda D.; Cavalcanti, Lívia N. (2022). "Nickel-catalyzed reductive decarboxylation of fatty acids for drop-in biofuel production". RSC Advances. 12 (43): 27889–27894. Bibcode:2022RSCAd..1227889S. doi:10.1039/D2RA04057C. PMC 9521194. PMID 36320252.
  5. ^ Poizot, Philippe; Jouikov, Viatcheslav; Simonet, Jacques (2009). "Glassy carbon modified by a silver–palladium alloy: Cheap and convenient cathodes for the selective reductive homocoupling of alkyl iodides". Tetrahedron Letters. 50 (7): 822–824. doi:10.1016/j.tetlet.2008.12.008.
  6. ^ Schaerer, A. A.; Busso, C. J.; Smith, A. E.; Skinner, L. B. (1955). "Properties of Pure Normal Alkanes in the C17 to C36 Range". Journal of the American Chemical Society. 77 (7): 2017–2019. Bibcode:1955JAChS..77.2017S. doi:10.1021/ja01612a097.
  7. ^ Gruber, Hannes; Groß, Peter; Rauch, Reinhard; Reichhold, Alexander; Zweiler, Richard; Aichernig, Christian; Müller, Stefan; Ataimisch, Nabeel; Hofbauer, Hermann (December 2021). "Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen". Biomass Conversion and Biorefinery. 11 (6): 2281–2292. Bibcode:2021BioCB..11.2281G. doi:10.1007/s13399-019-00459-5.
  8. ^ Hemptinne†, J.-L; Lognay, G.; Dixon, A.F.G (1998). "Mate recognition in the two-spot ladybird beetle, Adalia bipunctata: Role of chemical and behavioural cues". Journal of Insect Physiology. 44 (12): 1163–1171. Bibcode:1998JInsP..44.1163H. doi:10.1016/s0022-1910(98)00081-x. PMID 12770316.
  9. ^ Silk, Peter J.; Ryall, Krista; Barry Lyons, D.; Sweeney, Jon; Wu, Junping (2009). "A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae)". Naturwissenschaften. 96 (5): 601–608. Bibcode:2009NW.....96..601S. doi:10.1007/s00114-009-0513-1. PMID 19238346.
  10. ^ Hoover, Kelli; Keena, Melody; Nehme, Maya; Wang, Shifa; Meng, Peter; Zhang, Aijun (2014). "Sex-Specific Trail Pheromone Mediates Complex Mate Finding Behavior in Anoplophora glabripennis". Journal of Chemical Ecology. 40 (2): 169–180. Bibcode:2014JCEco..40..169H. doi:10.1007/s10886-014-0385-5. PMID 24510414.
  11. ^ "Test Method for Boiling Point Distribution of Hydrocarbon Solvents by Gas Chromatography" (Document). ASTM. doi:10.1520/D5399-09R17. D5399-09(2017).
  12. ^ Donald Mackay, Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, ISBN 1420044397, p. 206
  13. ^ "Nonane". PubChem. 26 October 2024.
  14. ^ Weast, Robert C., ed. (1982). CRC Handbook of Chemistry and Physics (63rd ed.). Boca Raton, Fl: CRC Press. p. C-561.
[edit]