Draft:Martin Picard
Submission declined on 25 June 2025 by Mgp28 (talk). This submission is not adequately supported by reliable sources. Reliable sources are required so that information can be verified. If you need help with referencing, please see Referencing for beginners and Citing sources.
Where to get help
How to improve a draft
You can also browse Wikipedia:Featured articles and Wikipedia:Good articles to find examples of Wikipedia's best writing on topics similar to your proposed article. Improving your odds of a speedy review To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags. Editor resources
| ![]() |
Comment: I'm not yet certain on notability but given the amount of unsourced material for a living person I think this needs to be declined until the issues I mentioned in my previous comment are addressed. Adding sources would also help to make a more convincing case about notability. Mgp28 (talk) 07:33, 25 June 2025 (UTC)
Comment: The early life, career, outreach and personal life sections are all unreferenced. Please remove external links from the body of the article (see WP:EL). Date of birth should only be listed if widely published by reliable sources (see WP:DOB). Mgp28 (talk) 07:22, 25 June 2025 (UTC)
Martin Picard is a Canadian-American mitochondrial psychobiologist and author. He is currently an Associate Professor of Behavioral Medicine at Columbia University Irving Medical Center, with appointments in the Departments of Psychiatry, Neurology, and the Robert N. Butler Columbia Aging Center. He holds the endowed Chair in Energy and Health (since March 2024) and leads the Mitochondrial Psychobiology Laboratory, with which he pioneered the field of Mitochondrial Psychobiology—exploring how psychological states influence mitochondrial biology and, how mitochondrial energetics shape brain, behavior, and human health.
![]() | |
Born | Martin Picard
18 May 1984 (age 41) Lasalle, Québec, Canada |
---|---|
Citizenship | Canadian |
Education | McGill University (BSc)
McGill University (PhD) University of Pennsylvania (Postdoc) |
Kown For | Mitochondrial Psychobiology |
Children | 1 |
Awards | Baszucki Prize in Science (2024)
Herbert Weiner Early Career Award (2023) Neal E. Miller Award (2019) |
Fields | Cell Biology; Biomedicine |
Thesis | Assessment of mitochondrial function in skeletal muscle during disease, disuse, and normal aging |
Doctoral advisors | Tanja Taivassalo; Russell T Hepple |
X | @MitoPsychoBio |
Website | www.picardlab.org |
Picard’s interdisciplinary research integrates mitochondrial physiology, stress biology, neuroscience, and psychiatry. He co-leads the vanguard Columbia Science of Health program. He has published over 145 articles and book chapters on topics including mitochondrial biology and diversity, mitochondrial signal transduction, the energetics of aging, the mind-mitochondria connection, and the energetic basis of stress resilience and health. In 2024, he was awarded the inaugural Baszucki Prize in Science for pioneering research connecting brain energetics and mitochondria to the human experience.
Early life and Education
[edit]Picard was born near Montreal, Québec, Canada, to a French-Canadian family of five. His mother, a nurse, is at least partially responsible for his passion for health and healing.
He received his B.Sc. with honors in Physiology from McGill University in 2007, where he conducted undergraduate research in neuroimmunology under the supervision of Julie Desbarats, investigating T-cell receptor signaling and the role of immune cell apoptosis in neuroinflammation.
He continued at McGill for his doctoral training, earning a Ph.D. in 2012 in Mitochondrial Biology of Aging under the mentorship of Tanja Taivassalo and Russell Hepple. His dissertation focused on skeletal muscle mitochondrial functions in aging and chronic disease, including the development of laboratory assays to measure mitochondrial respiration (oxidative phosphorylation), reactive oxygen species, and mitochondrial apoptotic signaling across animal and human models. He developed early markers of mitochondrial bioenergetic capacity and characterized how exercise, aging, and disease impact various aspects of mitochondrial biology in vivo. Concurrently, he completed two CIHR-funded fellowships in systems biology (now computational biology) and psychosocial oncology, setting a foundation for his research examining the psychobiology of health.
In 2009, Picard graduated from a 3-year program at the Montreal Institute of Classical Homeopathy (MICH), where he trained in holistic medicine and the art of clinical case taking. His thesis was titled: “The Therapeutic Potential of the MICH Process”. For post-graduate training, Picard traveled twice to India to train in Rajan Sankaran’s method of case taking, which systematically explores the emotional, psychological, and sensation-based experiential aspects of human disease. He held a part-time clinical practice until 2012.
From 2012 to 2015, Picard pursued a postdoctoral fellowship at the University of Pennsylvania, where he trained in mitochondrial genetics and signaling at the Center for Mitochondrial and Epigenomic Medicine (CMEM) under Douglas Wallace, who discovered the maternal inheritance of mitochondria and the first disease-causing mtDNA mutation. Picard’s work there focused on mitochondrial DNA (mtDNA) heteroplasmy and nuclear-mitochondrial crosstalk regulating gene expression, mitochondria-mitochondria interactions, and mitochondrial regulation of stress responses.
Academic career
[edit]Picard joined Columbia University in 2015 as an Assistant Professor of Behavioral Medicine in the Departments of Psychiatry and Neurology. He was promoted to Associate Professor in 2019. In 2024, he received the inaugural endowed Chair in Energy and Health at the Robert N. Butler Columbia Aging Center. He also holds research scientist positions at the New York State Psychiatric Institute (NYSPI) and the Research Foundation for Mental Hygiene (RFMH) and was a visiting scientist working with Sir Doug Turnbull at the Welcome Centre for Mitochondrial Research in Newcastle Upon Tyne, UK between 2015 and 2020.
His lab is based at the Vagelos College of Physicians and Surgeons, where he leads research at the interface of mitochondrial biology, psychiatry, and behavioral medicine. At the Columbia Neurological Institute, he has also followed patients with mitochondrial diseases under the mentorship of neuromuscular neurologist Michio Hirano, MD since 2016.
Picard’s early work at Columbia used quantitative electron microscopy techniques to describe novel membrane structures enabling mitochondrial communication, and in vitro studies examining mitochondrial signaling with the nucleus and the epigenome. In 2018, his Mitochondrial Signaling Lab was renamed the Mitochondrial Psychobiology Lab, marking a shift in his research group’s focus to understand the mind-mitochondria connection. With a large group of international collaborators, Picard established the field of Mitochondrial Psychobiology, a term he coined in a 2019 article.
Picard co-directs the Columbia Science of Health program, whose goal is to redefining health through a systems and energy-based lens, and understand and measure health at all scales, from biological to psychological to functional.
Research Contributions
[edit]Picard's diverse body of work is noted for integrating imaging, mitochondrial bioenergetics, cell biology of aging, and psychosocial sciences.
Mind-mitochondria connection

Picard provided the first evidence that physiological responses to induced stress were under mitochondrial regulation in mice..[1]. He then developed the NIH-funded Mitochondrial Stress, Brain Imaging, and Epigenetics (MiSBIE) study to investigate how variations in mitochondria affect the mind[2]. Related studies demonstrated that brief mental stress triggers mitochondrial DNA release into the bloodstream[3], and in saliva[4][5]. The initial hypothesis for this work was that the mtDNA release was a pro-inflammatory signal[6], but this hypothesis was subsequently disproven[7], instead suggesting that cf-mtDNA release could be linked to mitochondria transfer[8][9]. In 2018, Picard published a landmark study with psychologist Elissa Epel examining the Mitochondrial Health Index (MHI) in immune cells shown that positive mood influences mitochondria in immune cells within days[10]. Caroline Trumpff in Picard’s group later showed that the human brain mitochondrial proteome and single-cell gene expression are related to psychosocial exposures reported before death[11], relating positive and negative experiences to brain mitochondria. These findings suggested either that experiences shape mitochondrial biology, or that mitochondria shape experiences, or that both emerge from a common underlying factor[12]. In 2024, Picard and colleagues proposed the Hallmarks of Psychobiology[13].
Energetics and reversibility of aging
Picard’s dissertation work demonstrated muscle-specific changes in mitochondrial biology with aging[14], challenging the notion that all mitochondria degrade with age(REFs Aging Cell 2010, Aging Cell 2011). Subsequently, the Cellular Lifespan Study[15] developed by Gabriel Sturm in his laboratory defined longitudinal molecular and energetic aspects of cellular aging[16], highlighting how senescence is associated with an increase in energy demand, or hypermetabolism[17]. Picard’s team also discovered that nuclear mitochondrial DNA insertions (NUMTs), once believed to be uniquely vestigial evolutionary traces of mito-nuclear transfer, occur in aging cultured human cells and in the human brain, where they are associated with early mortality[18][19].
Using the Cellular Lifespan System[20], Picard’s group showed how mitochondrial defects also triggered hypermetabolism and accelerated biological aging, based on telomere shortening rates, epigenetic clocks, gene expression signatures, and the Hayflick limit[21]. These results led to the hypermetabolic theory of mitochondrial diseases, highlighting how mitochondrial defects do not decrease but, in fact, increase the energetic cost of life[22].
In 2021, using hair as a model to examine heterogeneity and the dynamics of the aging process, Picard’s team discovered that human hair greying is reversible. The Hair Pigmentation Pattern (HPP) methodology he developed provided the first quantitative evidence of a link between mental stress, mitochondrial biology, and hair greying[23][24][25][26]. To bridge molecular and cellular hallmarks of aging with clinical phenotypes, Picard proposed the Brain-body Energy Conservation (BEC) model of aging[17], which positions the brain as the ‘broker’ in the body’s economy of energy, and defines human aging as an energetic process.

Holistic view of mitochondria Drawing from parallels with bacterial behaviors[27] and other work, Picard has described mitochondria as dynamic, communicative, signal-transducing organelles[28][29]. He provided the first physical evidence of information exchange between mitochondria by demonstrating trans-mitochondrial cristae alignment in the mouse heart[30] (video here), and subsequently described mitochondrial nanotunnels in humans[31][32]. Picard has articulated social aspects of mitochondrial behavior[33] (e.g., communication, functional specialization, coordination of behaviors, and others) within the cell and across the organism, and with Tim Shutt suggested that mitochondria are the “CEO” (Chief Executive Organelle) of the cell[34], contributing to spur a transdisciplinary line of enquiry into the instructive role of mitochondria in human health.
Electron microscopy work from Picard’s laboratory[32][35] and many others[36][37][38] has demonstrated the surprising diversity of mitochondrion types, or mitotypes[39], across organs and cell types, and even within individual cells. He has advocated for more precise terminology to move mitochondrial science away from the binary concept of mitochondrial “function” and “dysfunction”[40].

Brain bioenergetics The first-generation Mitochondrial Health Index (MHI)[41] and second-generation Mitochondrial Respiratory Capacity (MRC)[42][43] developed in Picard’s laboratory afforded unprecedented sensitivity and thought to profile mitochondrial energetics in brain tissues. Picard’s lab mapped the distribution of brain mitochondria and their associations with anxiety-like behaviors in mice[44][45][46], and created Human MitoBrainMap v1.0, the first systematic map of mitochondrial biology across the human brain[42][43], contributing new tools to explore the energetic basis of brain function, behavior, and the mind.
Transdisciplinary science and human health
Picard has argued for a transdisciplinary health framework[47] and the value of human experiences, including self-rated health[48]. He has contended that mitochondria are positioned at the intersection of biological and psychosocial processes[49]. He proposed that the topological and functional positioning of mitochondria as “transducer” has implications for overall health and aging[50][51].
Outlining why biomedicine has preferentially focused on disease rather than health over the last decades[52][53], he has proposed that integrating energy, communication, and structure is a path to creating a more accurate, actionable framework for human health[52][53]. In 2025, with the Columbia Science of Health program he co-directs, he proposed that health is best understood as a field-like-state that may not be directly observable (like energetic fields known in physics), but rather best quantified by its effects on elements of the body-mind system[54]
Assay development in mitochondrial science
Picard’s early work involved the development of novel mitochondrial assays to measure live mitochondrial functions in small human muscle biopsy samples[55][56]. Using his new methods, he clarified the nature of mitochondrial recalibrations in COPD muscle[57] and provided the first head-to-head comparison of two widely used techniques in mitochondrial science: isolated mitochondria and permeabilized myofibers. This work demonstrated the divergent properties of both preparations[58] and the functional consequences in studying skeletal muscle mitochondrial aging[59]. Picard also developed quantitative microscopy techniques to profile mitochondrial shapes and network reorganization[60], applied across muscle[61][62] and brain cells[63]. Combining biochemical and imaging methods, he then described the origin of heteroplasmic mitochondrial DNA deletions in aging skeletal muscle[64].
Mitochondrial allostatic load (MAL)
In 2014, Picard introduced the concept of Mitochondrial Allostatic Load (MAL)[65], building on Bruce S. McEwen and Elliot Stellar’s more general concept of allostatic load[66]. Subsequent work outlined how mental stress could affect various domains of mitochondrial biology in animal models, human, and population-level studies[67][68]. Picard has called attention to the ambiguous interpretability of mitochondrial biomarkers, mitochondrial DNA copy number in particular[69], and highlighted the necessary energetic costs of the stress response[70]. His group was the first to quantify the energetic cost of cellular allostatic load in response to glucocorticoid stress (+60%)[71]. This led to the Energetic Model of Allostatic Load (EMAL)[72], which proposed that the basis for the stress to disease cascade is energetic in nature, arising from competitive energy trade-offs between systems[73][74]. Picard also conducted survey research with individuals who have mitochondrial diseases, identifying a potential link between mood and symptoms severity in genetic mitochondrial disorders[75]
His contributions have helped reframe mitochondria as signal-transducing, social organelles positioned at the interface of metabolism and subjective experiences, with implications for understanding cellular behavior, health dynamics, and the healing process.
Awards and honors
[edit]- Baszucki Prize in Science (2024, inaugural recipient)
- Nathan W. Shock Memorial Lecture, NIH/NIA (2023)
- Herbert Weiner Early Career Award, Society for Biopsychosocial Science and Medicine (2023)
- FABBS Early Career Impact Award (2021)
- NIH Rising Stars Lecture (2019)
- Neal E. Miller Award, Academy of Behavioral Medicine Research (2019)
- Herbert Irving Named Professorship, Columbia University (2017)
Picard has received continuous funding as Principal Investigator and collaborator on multiple NIH grants and from philanthropic organizations, including Baszucki Group. He has served as a scientific advisor to the National Institutes on Aging (NIA) and the National Institute of Mental Health (NIMH) initiatives on aging, mental health, and mitochondrial health.
Selected publications
[edit]- Mosharov EV, Rosenberg AM, Monzel AS, Osto CA, Stiles L, Rosoklija GB, Dwork AJ, Bindra S, Junker A, Zhang Y, Fujita M, Mariani MB, Bakalian M, Sulzer D, De Jager PL, Menon V, Shirihai OS, Mann JJ, Underwood M, Boldrini M, Thiebaut de Schotten M, Picard M. A human brain map of mitochondrial respiratory capacity and diversity. Nature 2025 PubMed Research Briefing
- Trumpff C, Monzel AS, Sandi C, Menon V, Klein HU, Fujita M, Lee A, Petyuk V, Hurst C, Duong DM, Seyfried NT, Wingo A, Wingo T, Wang Y, Thambisetty M, Ferrucci L, Bennett DA, De Jager PL, Picard M. Psychosocial experiences are associated with human brain mitochondrial biology. PNAS 2024; 121(27):e2317673121 PubMed
- Shaulson ED, Cohen AA, Picard M. The brain-body energy conservation model of aging. Nat Aging 2024; 4(10):1354-1371 PubMed
- Sturm G, Karan KR, Monzel AS, Santhanam BS, Taivassalo T, Bris C, Duplaga SA, Cross M, Towheed A, Higgins-Chen A, McManus MJ, Cardenas A, Lin J, Epel ES, Rahman S, Vissing V, Grassi B, Levine M, HorvathS, Haller RG, Lanaers G, St-Onge MP, Wallace DC, Tavazoie S, Procaccio V, Kaufman BA, Seifert EL, Hirano H, Picard M. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol 2023; 6(1):22 PubMed
- Monzel AS, Enriques JA, Picard M. Multifaceted mitochondria: Moving mitochondrial science beyond function and dysfunction. Nat Metab 2023; 5(4):546-562 PubMed
- Picard M, Shirihai O. Mitochondrial signal transduction. Cell Metab 2022; 34(11):1620-1653 PubMed
- Picard M. Why do we care more about disease than health? Phenomics 2022; 2:145–155 Link
- Rosenberg A, Rausser S, Ren J, Mosharov EV, Sturm G, Ogden RT, Patel P, Soni RK, Lacefield C, Tobin DJ, Paus R, Picard M. Quantitative mapping of human hair graying and reversal in relation to life stress. eLife 2021; 10:e67437 PubMed eLife Digest eLife Insight
- Picard M, Sandi C. The social nature of mitochondria: Implications for human health. Neurosci Biobehav Rev2021; 120(5):595-610 PubMed
- Picard M, Trumpff C, Burelle Y. Mitochondrial psychobiology: Foundation and applications. Curr Opin Behav Sci 2019; 28:142-151PubMed
- Picard M, Prather AA, Puterman E, Cuillerier A, Coccia M, Aschbacher K, Burelle Y, Epel ES. A mitochondrial health index sensitive to mood and caregiver stress. Biol Psychiatr 2018; 84(1):9-17 PubMed
- Picard M, McEwen BS. Psychological stress and mitochondria: A systematic review (Part I). Psychosom Med2018; 80(2):141-153PubMed
- Picard M, McEwen BS. Psychological stress and mitochondria: A conceptual framework (Part II). Psychosom Med2018; 80(2):126-140 PubMed
- Picard M, McManus MJ, Csordas G, Varnai P, Dorn GW, Williams D, Hajnoczky G, Wallace DC. Inter-mitochondrial coordination of cristae at regulated membrane junctions. Nat Commun 2015; 6:6259 PubMed
- Picard M, McManus MJ, Gray J, Nasca C, Moffat C, Kopinsky P, Seifert E, McEwen BS, Wallace DC. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory and transcriptional responses to psychological stress. PNAS 2015; 112(48):E6614-23 PubMed
Media and outreach
[edit]Picard’s work has been featured in major media outlets including The New York Times, The New Yorker, Quanta Magazine, Nature, Scientific American, The Transmitter, The Today Show, and TEDx.
He is an advocate for reimagining health as an energetic process, psychological well-being, and cellular resilience. His public engagements emphasize the dynamic interplay between mind and mitochondria. He is the author of a forthcoming book ENERGY (2026).
Personal Life
[edit]Martin Picard is father to a son (born 2019). In 2003, Picard cycled solo across Canada. He subsequently joined the McGill Cycling team and raced competitively, joining the Québec provincial road cycling team.
He has a deep interest in consciousness, nature, and the energetic dimensions of life and health. He is also an advocate for sustainable energy and electric transportation.
External links
[edit]- ^ Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C. (2015-12-01). "Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress". Proceedings of the National Academy of Sciences of the United States of America. 112 (48): E6614–6623. Bibcode:2015PNAS..112E6614P. doi:10.1073/pnas.1515733112. ISSN 1091-6490. PMC 4672794. PMID 26627253.
- ^ Kelly, Catherine; Trumpff, Caroline; Acosta, Carlos; Assuras, Stephanie; Baker, Jack; Basarrate, Sophia; Behnke, Alexander; Bo, Ke; Bobba-Alves, Natalia; Champagne, Frances A.; Conklin, Quinn; Cross, Marissa; De Jager, Philip; Engelstad, Kris; Epel, Elissa (October 2024). "A platform to map the mind-mitochondria connection and the hallmarks of psychobiology: the MiSBIE study". Trends in Endocrinology and Metabolism: TEM. 35 (10): 884–901. doi:10.1016/j.tem.2024.08.006. ISSN 1879-3061. PMC 11555495. PMID 39389809.
- ^ Trumpff, Caroline; Marsland, Anna L.; Basualto-Alarcón, Carla; Martin, James L.; Carroll, Judith E.; Sturm, Gabriel; Vincent, Amy E.; Mosharov, Eugene V.; Gu, Zhenglong; Kaufman, Brett A.; Picard, Martin (August 2019). "Acute psychological stress increases serum circulating cell-free mitochondrial DNA". Psychoneuroendocrinology. 106: 268–276. doi:10.1016/j.psyneuen.2019.03.026. ISSN 1873-3360. PMC 6589121. PMID 31029929.
- ^ Trumpff, Caroline; Rausser, Shannon; Haahr, Rachel; Karan, Kalpita R.; Gouspillou, Gilles; Puterman, Eli; Kirschbaum, Clemens; Picard, Martin (September 2022). "Dynamic behavior of cell-free mitochondrial DNA in human saliva". Psychoneuroendocrinology. 143: 105852. doi:10.1016/j.psyneuen.2022.105852. ISSN 1873-3360. PMC 9880596. PMID 35834882.
- ^ Trumpff, Caroline; Shire, David; Michelson, Jeremy; Bobba-Alves, Natalia; Yu, Temmie; Sloan, Richard P.; Juster, Robert-Paul; Hirano, Michio; Picard, Martin (2025-04-12). "Saliva and Blood Cell-Free mtDNA Reactivity to Acute Psychosocial Stress". MedRxiv: The Preprint Server for Health Sciences: 2025.04.09.25325473. doi:10.1101/2025.04.09.25325473. PMC 12036402. PMID 40297454.
- ^ Trumpff, Caroline; Michelson, Jeremy; Lagranha, Claudia J.; Taleon, Veronica; Karan, Kalpita R.; Sturm, Gabriel; Lindqvist, Daniel; Fernström, Johan; Moser, Dirk; Kaufman, Brett A.; Picard, Martin (July 2021). "Stress and circulating cell-free mitochondrial DNA: A systematic review of human studies, physiological considerations, and technical recommendations". Mitochondrion. 59: 225–245. doi:10.1016/j.mito.2021.04.002. ISSN 1872-8278. PMC 8418815. PMID 33839318.
- ^ Trumpff, Caroline; Shire, David; Lee, Seonjoo; Stanko, Katie; Wilson, Annette; Kaufman, Brett A.; Picard, Martin; Marsland, Anna L. (2025-04-10), "Effects of acute psychological stress on blood cell-free mitochondrial DNA (cf-mtDNA): A crossover experimental study", medRxiv : The Preprint Server for Health Sciences, medRxiv, doi:10.1101/2025.04.08.25325479, PMC 12036397, PMID 40297432, retrieved 2025-06-16
- ^ Liu, Delin; Gao, Youshui; Liu, Jiao; Huang, Yigang; Yin, Junhui; Feng, Yuyao; Shi, Linjing; Meloni, Bruno P.; Zhang, Changqing; Zheng, Minghao; Gao, Junjie (2021-02-16). "Intercellular mitochondrial transfer as a means of tissue revitalization". Signal Transduction and Targeted Therapy. 6 (1): 65. doi:10.1038/s41392-020-00440-z. ISSN 2059-3635. PMC 7884415. PMID 33589598.
- ^ Liu, Delin; Gao, Youshui; Liu, Jiao; Huang, Yigang; Yin, Junhui; Feng, Yuyao; Shi, Linjing; Meloni, Bruno P.; Zhang, Changqing; Zheng, Minghao; Gao, Junjie (2021-02-16). "Intercellular mitochondrial transfer as a means of tissue revitalization". Signal Transduction and Targeted Therapy. 6 (1): 65. doi:10.1038/s41392-020-00440-z. ISSN 2059-3635. PMC 7884415. PMID 33589598.
- ^ Picard, Martin; Prather, Aric A.; Puterman, Eli; Cuillerier, Alexanne; Coccia, Michael; Aschbacher, Kirstin; Burelle, Yan; Epel, Elissa S. (2018-07-01). "A Mitochondrial Health Index Sensitive to Mood and Caregiving Stress". Biological Psychiatry. 84 (1): 9–17. doi:10.1016/j.biopsych.2018.01.012. ISSN 0006-3223. PMC 6014908. PMID 29525040.
- ^ Trumpff, Caroline; Monzel, Anna S.; Sandi, Carmen; Menon, Vilas; Klein, Hans-Ulrich; Fujita, Masashi; Lee, Annie; Petyuk, Vladislav A.; Hurst, Cheyenne; Duong, Duc M.; Seyfried, Nicholas T.; Wingo, Aliza P.; Wingo, Thomas S.; Wang, Yanling; Thambisetty, Madhav (2024-07-02). "Psychosocial experiences are associated with human brain mitochondrial biology". Proceedings of the National Academy of Sciences of the United States of America. 121 (27): e2317673121. Bibcode:2024PNAS..12117673T. doi:10.1073/pnas.2317673121. ISSN 1091-6490. PMC 11228499. PMID 38889126.
- ^ Picard, Martin (2022-08-01). "Energy transduction and the mind–mitochondria connection". The Biochemist. 44 (4): 14–18. doi:10.1042/bio_2022_118. ISSN 0954-982X.
- ^ Kelly, Catherine; Trumpff, Caroline; Acosta, Carlos; Assuras, Stephanie; Baker, Jack; Basarrate, Sophia; Behnke, Alexander; Bo, Ke; Bobba-Alves, Natalia; Champagne, Frances A.; Conklin, Quinn; Cross, Marissa; De Jager, Philip; Engelstad, Kris; Epel, Elissa (October 2024). "A platform to map the mind-mitochondria connection and the hallmarks of psychobiology: the MiSBIE study". Trends in Endocrinology and Metabolism: TEM. 35 (10): 884–901. doi:10.1016/j.tem.2024.08.006. ISSN 1879-3061. PMC 11555495. PMID 39389809.
- ^ Picard, M (May 2012). "Assessment of mitochondrial function in skeletal muscle during disease, disuse and normal aging". PhD Dissertation, McGill University, Canada.
- ^ Sturm, Gabriel; Monzel, Anna S.; Karan, Kalpita R.; Michelson, Jeremy; Ware, Sarah A.; Cardenas, Andres; Lin, Jue; Bris, Céline; Santhanam, Balaji; Murphy, Michael P.; Levine, Morgan E.; Horvath, Steve; Belsky, Daniel W.; Wang, Shuang; Procaccio, Vincent (2022-12-03). "A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations". Scientific Data. 9 (1): 751. Bibcode:2022NatSD...9..751S. doi:10.1038/s41597-022-01852-y. ISSN 2052-4463. PMC 9719499. PMID 36463290.
- ^ Sturm, Gabriel; Cardenas, Andres; Bind, Marie-Abèle; Horvath, Steve; Wang, Shuang; Wang, Yunzhang; Hägg, Sara; Hirano, Michio; Picard, Martin (2019-04-10). "Human Aging DNA Methylation Signatures are Conserved but Accelerated in Cultured Fibroblasts". Epigenetics. 14 (10): 961–976. doi:10.1101/605295. PMC 6691995. PMID 31156022. Retrieved 2025-06-16.
- ^ a b Shaulson, Evan D.; Cohen, Alan A.; Picard, Martin (October 2024). "The brain-body energy conservation model of aging". Nature Aging. 4 (10): 1354–1371. doi:10.1038/s43587-024-00716-x. ISSN 2662-8465. PMID 39379694.
- ^ Zhou, Weichen; Karan, Kalpita R.; Gu, Wenjin; Klein, Hans-Ulrich; Sturm, Gabriel; De Jager, Philip L.; Bennett, David A.; Hirano, Michio; Picard, Martin; Mills, Ryan E. (August 2024). "Somatic nuclear mitochondrial DNA insertions are prevalent in the human brain and accumulate over time in fibroblasts". PLOS Biology. 22 (8): e3002723. doi:10.1371/journal.pbio.3002723. ISSN 1545-7885. PMC 11340991. PMID 39172952.
- ^ Doss, Rose M.; Breuss, Martin W. (2024-08-23). "A somatic view of the genomic impact of mitochondrial endosymbiosis". PLOS Biology. 22 (8): e3002756. doi:10.1371/journal.pbio.3002756. ISSN 1545-7885. PMC 11343374. PMID 39178182.
- ^ Sturm, Gabriel; Monzel, Anna S.; Karan, Kalpita R.; Michelson, Jeremy; Ware, Sarah A.; Cardenas, Andres; Lin, Jue; Bris, Céline; Santhanam, Balaji; Murphy, Michael P.; Levine, Morgan E.; Horvath, Steve; Belsky, Daniel W.; Wang, Shuang; Procaccio, Vincent (2022-12-03). "A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations". Scientific Data. 9 (1): 751. Bibcode:2022NatSD...9..751S. doi:10.1038/s41597-022-01852-y. ISSN 2052-4463. PMC 9719499. PMID 36463290.
- ^ Sturm, Gabriel; Karan, Kalpita R.; Monzel, Anna S.; Santhanam, Balaji; Taivassalo, Tanja; Bris, Céline; Ware, Sarah A.; Cross, Marissa; Towheed, Atif; Higgins-Chen, Albert; McManus, Meagan J.; Cardenas, Andres; Lin, Jue; Epel, Elissa S.; Rahman, Shamima (2023-01-12). "OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases". Communications Biology. 6 (1): 22. doi:10.1038/s42003-022-04303-x. ISSN 2399-3642. PMC 9837150. PMID 36635485.
- ^ Sercel, Alexander J.; Sturm, Gabriel; Gallagher, Dympna; St-Onge, Marie-Pierre; Kempes, Christopher P.; Pontzer, Herman; Hirano, Michio; Picard, Martin (February 2024). "Hypermetabolism and energetic constraints in mitochondrial disorders". Nature Metabolism. 6 (2): 192–195. doi:10.1038/s42255-023-00968-8. ISSN 2522-5812. PMC 12066245. PMID 38337097.
- ^ Rosenberg, Ayelet M.; Rausser, Shannon; Ren, Junting; Mosharov, Eugene V.; Sturm, Gabriel; Ogden, R. Todd; Patel, Purvi; Kumar Soni, Rajesh; Lacefield, Clay; Tobin, Desmond J.; Paus, Ralf; Picard, Martin (2021-06-22). "Quantitative mapping of human hair greying and reversal in relation to life stress". eLife. 10: e67437. doi:10.7554/eLife.67437. ISSN 2050-084X. PMC 8219384. PMID 34155974.
- ^ "Hair is a history book". eLife. 2021-06-22. Retrieved 2025-06-16.
- ^ Philpott, Michael P (2021-06-30). "Watching hair turn grey". eLife. 10: e70584. doi:10.7554/eLife.70584. ISSN 2050-084X. PMC 8245124. PMID 34190044.
- ^ O'Sullivan, James D. B.; Peters, Eva M. J.; Amer, Yomna; Atuluru, Pranusha; Chéret, Jérémy; Rosenberg, Ayelet M.; Picard, Martin; Paus, Ralf (July 2022). "The impact of perceived stress on the hair follicle: Towards solving a psychoneuroendocrine and neuroimmunological puzzle". Frontiers in Neuroendocrinology. 66: 101008. doi:10.1016/j.yfrne.2022.101008. ISSN 1095-6808. PMID 35660551.
- ^ Picard, Martin; Burelle, Yan (April 2012). "Mitochondria: starving to reach quorum?: Insight into the physiological purpose of mitochondrial fusion". BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 34 (4): 272–274. doi:10.1002/bies.201100179. ISSN 1521-1878. PMID 22290641.
- ^ Picard, Martin; Shirihai, Orian S. (2022-11-01). "Mitochondrial signal transduction". Cell Metabolism. 34 (11): 1620–1653. doi:10.1016/j.cmet.2022.10.008. ISSN 1932-7420. PMC 9692202. PMID 36323233.
- ^ Picard, Martin (August 2015). "Mitochondrial synapses: intracellular communication and signal integration". Trends in Neurosciences. 38 (8): 468–474. doi:10.1016/j.tins.2015.06.001. ISSN 1878-108X. PMID 26187720.
- ^ Picard, Martin; McManus, Meagan J.; Csordás, György; Várnai, Péter; Dorn, Gerald W.; Williams, Dewight; Hajnóczky, György; Wallace, Douglas C. (2015-02-17). "Trans-mitochondrial coordination of cristae at regulated membrane junctions". Nature Communications. 6: 6259. Bibcode:2015NatCo...6.6259P. doi:10.1038/ncomms7259. ISSN 2041-1723. PMC 4332397. PMID 25687472.
- ^ Vincent, Amy E.; White, Kathryn; Davey, Tracey; Philips, Jonathan; Ogden, R. Todd; Lawless, Conor; Warren, Charlotte; Hall, Matt G.; Ng, Yi Shiau; Falkous, Gavin; Holden, Thomas; Deehan, David; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin (2019-01-22). "Quantitative 3D Mapping of the Human Skeletal Muscle Mitochondrial Network". Cell Reports. 26 (4): 996–1009.e4. doi:10.1016/j.celrep.2019.01.010. ISSN 2211-1247. PMC 6513570. PMID 30655224.
- ^ a b Vincent, Amy E.; White, Kathryn; Davey, Tracey; Philips, Jonathan; Ogden, R. Todd; Lawless, Conor; Warren, Charlotte; Hall, Matt G.; Ng, Yi Shiau; Falkous, Gavin; Holden, Thomas; Deehan, David; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin (2019-01-22). "Quantitative 3D Mapping of the Human Skeletal Muscle Mitochondrial Network". Cell Reports. 26 (4): 996–1009.e4. doi:10.1016/j.celrep.2019.01.010. ISSN 2211-1247. PMC 6513570. PMID 30655224.
- ^ Picard, Martin; Sandi, Carmen (January 2021). "The social nature of mitochondria: Implications for human health". Neuroscience and Biobehavioral Reviews. 120: 595–610. doi:10.1016/j.neubiorev.2020.04.017. ISSN 1873-7528. PMC 8058501. PMID 32651001.
- ^ Lee-Glover, Laurie P.; Picard, Martin; Shutt, Timothy E. (2025-05-01). "Mitochondria - the CEO of the cell". Journal of Cell Science. 138 (9): jcs263403. doi:10.1242/jcs.263403. ISSN 1477-9137. PMC 12070065. PMID 40310473.
- ^ Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin (2016-08-10). "The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy". Scientific Reports. 6: 30610. Bibcode:2016NatSR...630610V. doi:10.1038/srep30610. ISSN 2045-2322. PMC 4978969. PMID 27506553.
- ^ Pekkurnaz, Gulcin; Wang, Xinnan (July 2022). "Mitochondrial heterogeneity and homeostasis through the lens of a neuron". Nature Metabolism. 4 (7): 802–812. doi:10.1038/s42255-022-00594-w. ISSN 2522-5812. PMC 11151822. PMID 35817853.
- ^ Glancy, Brian; Kim, Yuho; Katti, Prasanna; Willingham, T. Bradley (2020). "The Functional Impact of Mitochondrial Structure Across Subcellular Scales". Frontiers in Physiology. 11: 541040. doi:10.3389/fphys.2020.541040. ISSN 1664-042X. PMC 7686514. PMID 33262702.
- ^ Benador, Ilan Y.; Veliova, Michaela; Mahdaviani, Kiana; Petcherski, Anton; Wikstrom, Jakob D.; Assali, Essam A.; Acín-Pérez, Rebeca; Shum, Michaël; Oliveira, Marcus F.; Cinti, Saverio; Sztalryd, Carole; Barshop, William D.; Wohlschlegel, James A.; Corkey, Barbara E.; Liesa, Marc (2018-04-03). "Mitochondria Bound to Lipid Droplets Have Unique Bioenergetics, Composition, and Dynamics that Support Lipid Droplet Expansion". Cell Metabolism. 27 (4): 869–885.e6. doi:10.1016/j.cmet.2018.03.003. ISSN 1550-4131. PMC 5969538. PMID 29617645.
- ^ Monzel, AS; Devine, J; Kapri, D; Enriquez, JA; Trumpff, C; Picard, M. "A Quantitative approach to mapping mitochondrial specialization and plasticity". Preprint.
- ^ Monzel, Anna S.; Enríquez, José Antonio; Picard, Martin (April 2023). "Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction". Nature Metabolism. 5 (4): 546–562. doi:10.1038/s42255-023-00783-1. ISSN 2522-5812. PMC 10427836. PMID 37100996.
- ^ Rausser, Shannon; Trumpff, Caroline; McGill, Marlon A.; Junker, Alex; Wang, Wei; Ho, Siu-Hong; Mitchell, Anika; Karan, Kalpita R.; Monk, Catherine; Segerstrom, Suzanne C.; Reed, Rebecca G.; Picard, Martin (2021-10-26). "Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures". eLife. 10: e70899. doi:10.7554/eLife.70899. ISSN 2050-084X. PMC 8612706. PMID 34698636.
- ^ a b Mosharov, Eugene V.; Rosenberg, Ayelet M.; Monzel, Anna S.; Osto, Corey A.; Stiles, Linsey; Rosoklija, Gorazd B.; Dwork, Andrew J.; Bindra, Snehal; Junker, Alex; Zhang, Ya; Fujita, Masashi; Mariani, Madeline B.; Bakalian, Mihran; Sulzer, David; De Jager, Philip L. (May 2025). "A human brain map of mitochondrial respiratory capacity and diversity". Nature. 641 (8063): 749–758. Bibcode:2025Natur.641..749M. doi:10.1038/s41586-025-08740-6. ISSN 1476-4687. PMID 40140564.
- ^ a b "A map of mitochondrial biology reveals the energy landscape of the human brain". Nature. 2025-03-26. doi:10.1038/d41586-025-00872-z. ISSN 1476-4687. PMID 40140507.
- ^ Rosenberg, Ayelet M.; Saggar, Manish; Monzel, Anna S.; Devine, Jack; Rogu, Peter; Limoges, Aaron; Junker, Alex; Sandi, Carmen; Mosharov, Eugene V.; Dumitriu, Dani; Anacker, Christoph; Picard, Martin (2023-08-10). "Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice". Nature Communications. 14 (1): 4726. Bibcode:2023NatCo..14.4726R. doi:10.1038/s41467-023-39941-0. ISSN 2041-1723. PMC 10415311. PMID 37563104.
- ^ "Brain mitochondria predict a mouse's stress level". Nature. 620 (7975): 701. 2023-08-16. Bibcode:2023Natur.620T.701.. doi:10.1038/d41586-023-02575-9. PMID 37587277.
- ^ Crockett, Alexia; Hollis, Fiona (2024-01-01). "Brain mitochondria in behavior: more than a powerhouse". Trends in Endocrinology & Metabolism. 35 (1): 1–3. doi:10.1016/j.tem.2023.09.008. ISSN 1043-2760. PMC 10841612. PMID 37805273.
- ^ Picard, Martin; Sabiston, Catherine M.; McNamara, Judyann K. (February 2011). "The need for a trans-disciplinary, global health framework". Journal of Alternative and Complementary Medicine (New York, N.Y.). 17 (2): 179–184. doi:10.1089/acm.2010.0149. ISSN 1557-7708. PMID 21309708.
- ^ Picard, M; Juster, RP; Sabiston, CM (2013). "In the whole greater than the sum of the parts? Self-rated health and transdisciplinary". Health. 05 (12): 24–30. doi:10.4236/health.2013.512A004.
- ^ Picard, Martin (2011). "Pathways to aging: the mitochondrion at the intersection of biological and psychosocial sciences". Journal of Aging Research. 2011: 814096. doi:10.4061/2011/814096. ISSN 2090-2212. PMC 3180824. PMID 21961065.
- ^ Picard, Martin; Wallace, Douglas C.; Burelle, Yan (September 2016). "The rise of mitochondria in medicine". Mitochondrion. 30: 105–116. doi:10.1016/j.mito.2016.07.003. ISSN 1872-8278. PMC 5023480. PMID 27423788.
- ^ Picard, Martin; Shirihai, Orian S. (2022-11-01). "Mitochondrial signal transduction". Cell Metabolism. 34 (11): 1620–1653. doi:10.1016/j.cmet.2022.10.008. ISSN 1932-7420. PMC 9692202. PMID 36323233.
- ^ a b Picard, Martin (2022-06-01). "Why Do We Care More About Disease than Health?". Phenomics. 2 (3): 145–155. doi:10.1007/s43657-021-00037-8. ISSN 2730-5848. PMC 9590501. PMID 36939781.
- ^ a b Picard, Martin (2022-08-01). "Energy transduction and the mind–mitochondria connection". The Biochemist. 44 (4): 14–18. doi:10.1042/bio_2022_118. ISSN 0954-982X.
- ^ Cohen, Alan A.; Picard, Martin; Beard, John R.; Belsky, Daniel W.; Herbstman, Julie; Kuryla, Christine L.; Liu, Molei; Makarem, Nour; Malinsky, Daniel; Pei, Sen; Wei, Ying; Fried, Linda P. (2025-06-20). "Intrinsic health as a foundation for a science of health". Science Advances. 11 (25): eadu8437. doi:10.1126/sciadv.adu8437. ISSN 2375-2548. PMC 12175904. PMID 40532003.
- ^ Picard, Martin; Csukly, Kristina; Robillard, Marie-Eve; Godin, Richard; Ascah, Alexis; Bourcier-Lucas, Céline; Burelle, Yan (August 2008). "Resistance to Ca2+-induced opening of the permeability transition pore differs in mitochondria from glycolytic and oxidative muscles". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 295 (2): R659–668. doi:10.1152/ajpregu.90357.2008. ISSN 0363-6119. PMID 18495829.
- ^ Picard, Martin; Taivassalo, Tanja; Ritchie, Darmyn; Wright, Kathryn J.; Thomas, Melissa M.; Romestaing, Caroline; Hepple, Russell T. (2011-03-28). "Mitochondrial structure and function are disrupted by standard isolation methods". PLOS ONE. 6 (3): e18317. Bibcode:2011PLoSO...618317P. doi:10.1371/journal.pone.0018317. ISSN 1932-6203. PMC 3065478. PMID 21512578.
- ^ Picard, Martin; Godin, Richard; Sinnreich, Michael; Baril, Jacinthe; Bourbeau, Jean; Perrault, Hélène; Taivassalo, Tanja; Burelle, Yan (2008-11-15). "The mitochondrial phenotype of peripheral muscle in chronic obstructive pulmonary disease: disuse or dysfunction?". American Journal of Respiratory and Critical Care Medicine. 178 (10): 1040–1047. doi:10.1164/rccm.200807-1005OC. ISSN 1535-4970. PMID 18755922.
- ^ Picard, Martin; Taivassalo, Tanja; Ritchie, Darmyn; Wright, Kathryn J.; Thomas, Melissa M.; Romestaing, Caroline; Hepple, Russell T. (2011-03-28). "Mitochondrial structure and function are disrupted by standard isolation methods". PLOS ONE. 6 (3): e18317. Bibcode:2011PLoSO...618317P. doi:10.1371/journal.pone.0018317. ISSN 1932-6203. PMC 3065478. PMID 21512578.
- ^ Picard, Martin; Ritchie, Darmyn; Wright, Kathryn J.; Romestaing, Caroline; Thomas, Melissa M.; Rowan, Sharon L.; Taivassalo, Tanja; Hepple, Russell T. (December 2010). "Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers". Aging Cell. 9 (6): 1032–1046. doi:10.1111/j.1474-9726.2010.00628.x. ISSN 1474-9726. PMID 20849523.
- ^ Picard, Martin; White, Kathryn; Turnbull, Douglass M. (2013-01-15). "Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study". Journal of Applied Physiology (Bethesda, Md.: 1985). 114 (2): 161–171. doi:10.1152/japplphysiol.01096.2012. ISSN 1522-1601. PMC 3544498. PMID 23104694.
- ^ Picard, Martin; Gentil, Benoit J.; McManus, Meagan J.; White, Kathryn; St Louis, Kyle; Gartside, Sarah E.; Wallace, Douglas C.; Turnbull, Douglass M. (November 2013). "Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle". Journal of Applied Physiology (Bethesda, Md.: 1985). 115 (10): 1562–1571. doi:10.1152/japplphysiol.00819.2013. ISSN 1522-1601. PMC 3841825. PMID 23970537.
- ^ Vincent, Amy E.; White, Kathryn; Davey, Tracey; Philips, Jonathan; Ogden, R. Todd; Lawless, Conor; Warren, Charlotte; Hall, Matt G.; Ng, Yi Shiau; Falkous, Gavin; Holden, Thomas; Deehan, David; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin (2019-01-22). "Quantitative 3D Mapping of the Human Skeletal Muscle Mitochondrial Network". Cell Reports. 26 (4): 996–1009.e4. doi:10.1016/j.celrep.2019.01.010. ISSN 2211-1247. PMC 6513570. PMID 30655224.
- ^ Faitg, Julie; Lacefield, Clay; Davey, Tracey; White, Kathryn; Laws, Ross; Kosmidis, Stylianos; Reeve, Amy K.; Kandel, Eric R.; Vincent, Amy E.; Picard, Martin (2021-08-10). "3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus". Cell Reports. 36 (6): 109509. doi:10.1016/j.celrep.2021.109509. ISSN 2211-1247. PMC 8423436. PMID 34380033.
- ^ Vincent, Amy E.; Rosa, Hannah S.; Pabis, Kamil; Lawless, Conor; Chen, Chun; Grünewald, Anne; Rygiel, Karolina A.; Rocha, Mariana C.; Reeve, Amy K.; Falkous, Gavin; Perissi, Valentina; White, Kathryn; Davey, Tracey; Petrof, Basil J.; Sayer, Avan A. (August 2018). "Subcellular origin of mitochondrial DNA deletions in human skeletal muscle". Annals of Neurology. 84 (2): 289–301. doi:10.1002/ana.25288. ISSN 1531-8249. PMC 6141001. PMID 30014514.
- ^ Picard, Martin; Juster, Robert-Paul; McEwen, Bruce S. (May 2014). "Mitochondrial allostatic load puts the 'gluc' back in glucocorticoids". Nature Reviews. Endocrinology. 10 (5): 303–310. doi:10.1038/nrendo.2014.22. ISSN 1759-5037. PMID 24663223.
- ^ McEWEN, Bruce S. (1998). "Stress, Adaptation, and Disease: Allostasis and Allostatic Load". Annals of the New York Academy of Sciences. 840 (1): 33–44. Bibcode:1998NYASA.840...33M. doi:10.1111/j.1749-6632.1998.tb09546.x. ISSN 1749-6632. PMID 9629234.
- ^ Picard, Martin; McEwen, Bruce S. (2018). "Psychological Stress and Mitochondria: A Systematic Review". Psychosomatic Medicine. 80 (2): 141–153. doi:10.1097/PSY.0000000000000545. ISSN 1534-7796. PMC 5901654. PMID 29389736.
- ^ Picard, Martin; McEwen, Bruce S. (2018). "Psychological Stress and Mitochondria: A Conceptual Framework". Psychosomatic Medicine. 80 (2): 126–140. doi:10.1097/PSY.0000000000000544. ISSN 1534-7796. PMC 5901651. PMID 29389735.
- ^ Picard, Martin (September 2021). "Blood mitochondrial DNA copy number: What are we counting?". Mitochondrion. 60: 1–11. doi:10.1016/j.mito.2021.06.010. ISSN 1872-8278. PMC 8464495. PMID 34157430.
- ^ Picard, Martin; McEwen, Bruce S.; Epel, Elissa S.; Sandi, Carmen (April 2018). "An energetic view of stress: Focus on mitochondria". Frontiers in Neuroendocrinology. 49: 72–85. doi:10.1016/j.yfrne.2018.01.001. ISSN 1095-6808. PMC 5964020. PMID 29339091.
- ^ Bobba-Alves, Natalia; Sturm, Gabriel; Lin, Jue; Ware, Sarah A.; Karan, Kalpita R.; Monzel, Anna S.; Bris, Céline; Procaccio, Vincent; Lenaers, Guy; Higgins-Chen, Albert; Levine, Morgan; Horvath, Steve; Santhanam, Balaji S.; Kaufman, Brett A.; Hirano, Michio (September 2023). "Cellular allostatic load is linked to increased energy expenditure and accelerated biological aging". Psychoneuroendocrinology. 155: 106322. doi:10.1016/j.psyneuen.2023.106322. ISSN 1873-3360. PMC 10528419. PMID 37423094.
- ^ Bobba-Alves, Natalia; Juster, Robert-Paul; Picard, Martin (December 2022). "The energetic cost of allostasis and allostatic load". Psychoneuroendocrinology. 146: 105951. doi:10.1016/j.psyneuen.2022.105951. ISSN 1873-3360. PMC 10082134. PMID 36302295.
- ^ Sercel, Alexander J.; Sturm, Gabriel; Gallagher, Dympna; St-Onge, Marie-Pierre; Kempes, Christopher P.; Pontzer, Herman; Hirano, Michio; Picard, Martin (February 2024). "Hypermetabolism and energetic constraints in mitochondrial disorders". Nature Metabolism. 6 (2): 192–195. doi:10.1038/s42255-023-00968-8. ISSN 2522-5812. PMC 12066245. PMID 38337097.
- ^ Bobba-Alves, Natalia; Juster, Robert-Paul; Picard, Martin (December 2022). "The energetic cost of allostasis and allostatic load". Psychoneuroendocrinology. 146: 105951. doi:10.1016/j.psyneuen.2022.105951. ISSN 1873-3360. PMC 10082134. PMID 36302295.
- ^ Kelly, Catherine; Cross, Marissa; Junker, Alex; Englestad, Kris; Rosales, Xiomara Q.; Hirano, Michio; Trumpff, Caroline; Picard, Martin (2025-03-29). "Perceived association of mood and symptom severity in adults with mitochondrial diseases". Mitochondrion. 84: 102033. doi:10.1016/j.mito.2025.102033. ISSN 1872-8278. PMID 40164290.