Jump to content

Monus

From Wikipedia, the free encyclopedia

In mathematics, monus is an operator on certain commutative monoids that are not groups. A commutative monoid on which a monus operator is defined is called a commutative monoid with monus, or CMM. The monus operator may be denoted with the minus sign, "", because the natural numbers are a CMM under subtraction. It is also denoted with a dotted minus sign, "", to distinguish it from the standard subtraction operator.

Notation

[edit]
glyph Unicode name Unicode code point[1] HTML character entity reference HTML/XML numeric character references TeX
DOT MINUS U+2238 ∸ \dot -
MINUS SIGN U+2212 − − -

A use of the monus symbol is seen in Dennis Ritchie's PhD Thesis from 1968.[2]

Definition

[edit]

Let be a commutative monoid. Define a binary relation on this monoid as follows: for any two elements and , define if there exists an element such that . It is easy to check that is reflexive[3] and that it is transitive.[4] is called naturally ordered if the relation is additionally antisymmetric and hence a partial order. Further, if for each pair of elements and , a unique smallest element exists such that , then M is called a commutative monoid with monus[5]: 129  and the monus of any two elements and can be defined as this unique smallest element such that .

An example of a commutative monoid that is not naturally ordered is , the commutative monoid of the integers with usual addition, as for any there exists such that , so holds for any , so is not a partial order. There are also examples of monoids that are naturally ordered but are not semirings with monus.[6]

Other structures

[edit]

Beyond monoids, the notion of monus can be applied to other structures. For instance, a naturally ordered semiring (sometimes called a dioid[7]) is a semiring where the commutative monoid induced by the addition operator is naturally ordered. When this monoid is a commutative monoid with monus, the semiring is called a semiring with monus, or m-semiring.

Examples

[edit]

If M is an ideal in a Boolean algebra, then M is a commutative monoid with monus under and .[5]: 129 

Natural numbers

[edit]

The natural numbers including 0 form a commutative monoid with monus, with their ordering being the usual order of natural numbers and the monus operator being a saturating variant of standard subtraction, variously referred to as truncated subtraction,[8] limited subtraction, proper subtraction, doz (difference or zero),[9] and monus.[10] Truncated subtraction is usually defined as[8]

where − denotes standard subtraction. For example, 5 − 3 = 2 and 3 − 5 = −2 in regular subtraction, whereas in truncated subtraction 3 ∸ 5 = 0. Truncated subtraction may also be defined as[10]

In Peano arithmetic, truncated subtraction is defined in terms of the predecessor function P (the inverse of the successor function):[8]

A definition that does not need the predecessor function is:

Truncated subtraction is useful in contexts such as primitive recursive functions, which are not defined over negative numbers.[8] Truncated subtraction is also used in the definition of the multiset difference operator.

Properties

[edit]

The class of all commutative monoids with monus form a variety.[5]: 129  The equational basis for the variety of all CMMs consists of the axioms for commutative monoids, as well as the following axioms:

Notes

[edit]
  1. ^ Characters in Unicode are referenced in prose via the "U+" notation. The hexadecimal number after the "U+" is the character's Unicode code point.
  2. ^ Brailsford, David F.; Kernighan, Brian W.; Ritchie, William A. (2022), "How did Dennis Ritchie produce his PhD thesis? A typographical mystery" (PDF), in Wigington, Curtis; Hardy, Matthew; Bagley, Steven R.; Simske, Steven J. (eds.), Proceedings of the 22nd ACM Symposium on Document Engineering, DocEng 2022, San Jose, California, USA, September 20–23, 2022, Association for Computing Machinery, pp. 2:1–2:10, doi:10.1145/3558100.3563839
  3. ^ taking to be the neutral element of the monoid
  4. ^ if with witness and with witness then witnesses that
  5. ^ a b c Amer, K. (1984), "Equationally complete classes of commutative monoids with monus", Algebra Universalis, 18: 129–131, doi:10.1007/BF01182254
  6. ^ M.Monet (2016-10-14), Example of a naturally ordered semiring which is not an m-semiring, Mathematics Stack Exchange, retrieved 2016-10-14
  7. ^ Semirings for breakfast, slide 17
  8. ^ a b c d Vereschchagin, Nikolai K.; Shen, Alexander (2003), Computable Functions, translated by V. N. Dubrovskii, American Mathematical Society, p. 141, ISBN 0-8218-2732-4
  9. ^ Warren Jr., Henry S. (2013), Hacker's Delight (2 ed.), Addison Wesley - Pearson Education, Inc., ISBN 978-0-321-84268-8
  10. ^ a b Jacobs, Bart (1996), "Coalgebraic Specifications and Models of Deterministic Hybrid Systems", in Wirsing, Martin; Nivat, Maurice (eds.), Algebraic Methodology and Software Technology, Lecture Notes in Computer Science, vol. 1101, Springer, p. 522, ISBN 3-540-61463-X