Riemann's existence theorem
In mathematics, specifically complex analysis, Riemann's existence theorem says, in modern formulation, that the category of compact Riemann surfaces is equivalent to the category of complex complete algebraic curves.
Sometimes, the theorem also refers to a generalization (a theorem of Grauert–Remmert),[1] which says that the category of finite topological coverings of a complex algebraic variety is equivalent to the category of finite étale coverings of the variety.
Original statement
[edit]Let X be a compact Riemann surface, distinct points in X and complex numbers. Then there is a meromorphic function on X such that for each i.[2]
Proof
[edit]![]() | This section needs expansion. You can help by adding to it. (June 2025) |
For now, see SGA 1, Expose XII, Théorème 5.1., or SGA 4, Expose XI. 4.3.
Consequences
[edit]There are a number of consequences.
By definition, if X is a complex algebraic variety, the étale fundamental group of X at a geometric point x is the projective limit
over all finite Galois coverings of . By the existence theorem, we have Hence, is exactly the profinite completion of the usual topological fundamental group of X at x.[3]
See also
[edit]References
[edit]Works
[edit]- Harbater, David. "Riemann’s existence theorem." The Legacy of Bernhard Riemann After 150 (2015) (ed. by L. Ji, F. Oort, S.-T. Yau), Beijing-Boston: Higher Education Press and International Press, ISBN 978-1571463180
- Ryan Patrick Catullo, Riemann Existence Theorem. A slide for the paper.
- Grothendieck, Alexander; Raynaud, Michèle (2003) [1971], Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Paris: Société Mathématique de France, arXiv:math/0206203, Bibcode:2002math......6203G, ISBN 978-2-85629-141-2, MR 2017446
- M. Artin, A. Grothendieck, J.-L. Verdier, SGA 4, Théorie des topos et cohomologie étale des schémas, 1963–1964, Tomes 1 à 3, Avec la participation de N. Bourbaki, P. Deligne, B. Saint-Donat, version : c46c8b4 2018-12-20 13:39:00 +0100
- Danilov, V. I. (1996). "Cohomology of Algebraic Varieties". Algebraic Geometry II. Encyclopaedia of Mathematical Sciences. Vol. 35. pp. 1–125. doi:10.1007/978-3-642-60925-1_1. ISBN 978-3-642-64607-2.
- Remmert, Reinhold (1998), From Riemann surfaces to complex spaces, France, Paris: S´emin. Congr., 3, Soc. Math
- J. S. Milne (2008). Lectures on Étale Cohomology