Jump to content

Draft:Deaconescu's schemmel's totient problem: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Declining submission: nn - Submission is about a topic not yet shown to meet general notability guidelines (be more specific if possible) (AFCH)
Citation bot (talk | contribs)
Altered title. Add: authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Eastmain | #UCB_webform 63/314
 
Line 21: Line 21:
<math>n<2^{2^{\omega(n)}+\omega(n)}-2^{2^{\omega(n)-1}+\omega(n)}</math>.
<math>n<2^{2^{\omega(n)}+\omega(n)}-2^{2^{\omega(n)-1}+\omega(n)}</math>.


Further, he proved an analogous result due to Hernandez and Luca<ref>{{Cite journal |last=Luca |first=Florian |last2=Hernández Hernández |first2=Santos |date=2008-02-24 |title=A Note on Deaconescu's Result Concerning Lehmer's Problem |url=https://zenodo.org/doi/10.5281/zenodo.10068789 |journal=Integers |volume=8 |doi=10.5281/ZENODO.10068789 |issn=1553-1732}}</ref> that for a monic non-constant polynomial <math>P(X)\in \mathbb{Z}[X]</math>, there are at most finitely many composite integers <math>n</math> such that <math>S_2(n)\mid \varphi(n)-1</math> and <math>P(S_2(n))\equiv 0 \pmod{\phi(n)}</math>. Mandal<ref>{{Cite journal |last=Mandal |first=Sagar |date=2025-01-01 |title=A note on Deaconescu’s conjecture |url=https://www.sciendo.com/article/10.2478/awutm-2025-0005 |journal=Annals of West University of Timisoara - Mathematics and Computer Science |language=en |volume=61 |issue=1 |pages=55–60 |doi=10.2478/awutm-2025-0005 |issn=1841-3307}}</ref> improved Hasanalizade's result by proving that a Deaconescu number <math>n</math> must have <math>\omega(n)\geq17</math> and must be strictly larger than <math>5.86\times 10^{22}</math>. Further, he proved that if any Deaconescu number <math>n</math> has all prime divisors greater than or equal to <math>11</math>, then <math>\omega(n)\geq p^{*}</math>, where <math>p^{*}</math> is the smallest prime divisor of <math>n</math> and if <math>n\in D_3</math> then all the prime divisors of <math>n</math> must be congruent to <math>2</math> modulo <math>3</math> and <math>\omega(n)\geq 48</math>.
Further, he proved an analogous result due to Hernandez and Luca<ref>{{Cite journal |last1=Luca |first1=Florian |last2=Hernández Hernández |first2=Santos |date=2008-02-24 |title=A Note on Deaconescu's Result Concerning Lehmer's Problem |url=https://zenodo.org/doi/10.5281/zenodo.10068789 |journal=Integers |volume=8 |doi=10.5281/ZENODO.10068789 |issn=1553-1732}}</ref> that for a monic non-constant polynomial <math>P(X)\in \mathbb{Z}[X]</math>, there are at most finitely many composite integers <math>n</math> such that <math>S_2(n)\mid \varphi(n)-1</math> and <math>P(S_2(n))\equiv 0 \pmod{\phi(n)}</math>. Mandal<ref>{{Cite journal |last=Mandal |first=Sagar |date=2025-01-01 |title=A note on Deaconescu's conjecture |url=https://www.sciendo.com/article/10.2478/awutm-2025-0005 |journal=Annals of West University of Timisoara - Mathematics and Computer Science |language=en |volume=61 |issue=1 |pages=55–60 |doi=10.2478/awutm-2025-0005 |issn=1841-3307}}</ref> improved Hasanalizade's result by proving that a Deaconescu number <math>n</math> must have <math>\omega(n)\geq17</math> and must be strictly larger than <math>5.86\times 10^{22}</math>. Further, he proved that if any Deaconescu number <math>n</math> has all prime divisors greater than or equal to <math>11</math>, then <math>\omega(n)\geq p^{*}</math>, where <math>p^{*}</math> is the smallest prime divisor of <math>n</math> and if <math>n\in D_3</math> then all the prime divisors of <math>n</math> must be congruent to <math>2</math> modulo <math>3</math> and <math>\omega(n)\geq 48</math>.


== References ==
== References ==

Latest revision as of 06:48, 28 June 2025

In mathematics, schemmel's totient function is a multiplicative function defined by

for all primes and positive integers . In 2000 Deaconescu[1] conjectured that for

if and only if is a prime. Clearly, the conjecture states that for every , the set of integers satisfying

contains only prime number. It is easy to verify that for any prime we have . A composite integer is a Deaconescu number (or has the Deaconescu property) if it satisfies . Hasanalizade[2] proved that a Deaconescu number must be an odd, squarefree positive integer such that and

.

Further, he proved an analogous result due to Hernandez and Luca[3] that for a monic non-constant polynomial , there are at most finitely many composite integers such that and . Mandal[4] improved Hasanalizade's result by proving that a Deaconescu number must have and must be strictly larger than . Further, he proved that if any Deaconescu number has all prime divisors greater than or equal to , then , where is the smallest prime divisor of and if then all the prime divisors of must be congruent to modulo and .

References

[edit]
  1. ^ Deaconescu, Marian (2000-08-01). "Adding Units Mod n". Elemente der Mathematik. 55 (3): 123–127. doi:10.1007/s000170050078. ISSN 0013-6018.
  2. ^ Hasanalizade, E. (2022-11-04). "On a Conjecture of Deaconescu". Integers. 22. doi:10.5281/ZENODO.10997342. ISSN 1553-1732.
  3. ^ Luca, Florian; Hernández Hernández, Santos (2008-02-24). "A Note on Deaconescu's Result Concerning Lehmer's Problem". Integers. 8. doi:10.5281/ZENODO.10068789. ISSN 1553-1732.
  4. ^ Mandal, Sagar (2025-01-01). "A note on Deaconescu's conjecture". Annals of West University of Timisoara - Mathematics and Computer Science. 61 (1): 55–60. doi:10.2478/awutm-2025-0005. ISSN 1841-3307.