Jump to content

Stone algebra

From Wikipedia, the free encyclopedia

In mathematics, a Stone algebra or Stone lattice is a pseudocomplemented distributive lattice L in which any of the following equivalent statements hold for all [1]

  • (xy)* = x* ∨ y*;
  • (xy)** = x** ∨ y**;
  • x* ∨ x** = 1.

They were introduced by Grätzer & Schmidt (1957) and named after Marshall Harvey Stone.

The set S(L) ≝ { x** | xL } is called the skeleton of L. Then L is a Stone algebra if and only if its skeleton S(L) is a sublattice of L.[1]

Boolean algebras are Stone algebras, and Stone algebras are Ockham algebras.

Examples:

See also

[edit]

References

[edit]
  • Balbes, Raymond (1970), "A survey of Stone algebras", Proceedings of the Conference on Universal Algebra (Queen's Univ., Kingston, Ont., 1969), Kingston, Ont.: Queen's Univ., pp. 148–170, MR 0260638
  • Fofanova, T.S. (2001) [1994], "Stone lattice", Encyclopedia of Mathematics, EMS Press
  • Grätzer, George; Schmidt, E. T. (1957), "On a problem of M. H. Stone", Acta Mathematica Academiae Scientiarum Hungaricae, 8 (3–4): 455–460, doi:10.1007/BF02020328, ISSN 0001-5954, MR 0092763
  • Grätzer, George (1971), Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., ISBN 978-0-486-47173-0, MR 0321817


  1. ^ a b T.S. Blyth (2006). Lattices and Ordered Algebraic Structures. Springer Science & Business Media. Chapter 7. Pseudocomplementation; Stone and Heyting algebras. pp. 103–119. ISBN 978-1-84628-127-3.