From Wikipedia, the free encyclopedia
We are interested in studying how complex analytic functions behave when limited to the real line. So, let
D
{\displaystyle \mathbb {D} }
be a domain that contains some part of the real line and let
f
(
x
)
{\displaystyle f(x)\,}
be a complex analytic function from the domain
D
{\displaystyle \mathbb {D} }
into
C
{\displaystyle \mathbb {C} }
. Since
f
{\displaystyle f\,}
is analytic it has harmonic conjugates, call them
u
(
x
,
y
)
{\displaystyle u(x,y)\,}
and
v
(
x
,
y
)
{\displaystyle v(x,y)\,}
. So,
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
=
u
(
z
,
0
)
+
i
v
(
z
,
0
)
{\displaystyle f(z)=u(x,y)+iv(x,y)=u(z,0)+iv(z,0)\,}
An important result follows:
f
(
z
)
{\displaystyle f(z)\,}
=
∫
f
′
(
z
)
d
z
{\displaystyle =\int f'(z)\,dz}
=
∫
u
x
(
z
,
0
)
−
i
u
y
(
z
,
0
)
d
z
{\displaystyle =\int u_{x}(z,0)-iu_{y}(z,0)\,dz}
=
∫
v
y
(
z
,
0
)
+
i
v
x
(
z
,
0
)
d
z
{\displaystyle =\int v_{y}(z,0)+iv_{x}(z,0)\,dz}
We will derive the above result by using the conjugate of
f
′
(
x
)
{\displaystyle f'\,(x)}
. The domain of
f
{\displaystyle f\,}
and
f
¯
{\displaystyle {\overline {f}}}
need not be the same so we will let
D
¯
=
{
z
:
z
¯
∈
D
}
{\displaystyle {\overline {\mathbb {D} }}=\{z:{\overline {z}}\in \mathbb {D} \}}
, and
D
∗
=
D
⋂
D
¯
{\displaystyle \mathbb {D^{*}} =\mathbb {D} \bigcap {\overline {\mathbb {D} }}}
. In this way both
f
{\displaystyle f\,}
and
f
¯
{\displaystyle {\overline {f}}}
will be defined on
D
∗
{\displaystyle \mathbb {D^{*}} }
. Now since
f
{\displaystyle f\,}
is analytic on
D
∗
{\displaystyle \mathbb {D^{*}} }
we have that
f
′
(
z
)
{\displaystyle f'(z)\,}
=
u
x
(
x
,
y
)
+
i
v
x
(
x
,
y
)
{\displaystyle =u_{x}(x,y)+iv_{x}(x,y)\,}
=
v
y
(
x
,
y
)
−
i
u
y
(
x
,
y
)
{\displaystyle =v_{y}(x,y)-iu_{y}(x,y)\,}
And by the Cauchy-Riemann equations we arrive at
f
′
(
z
)
{\displaystyle f'(z)\,}
=
u
x
(
x
,
y
)
−
i
u
y
(
x
,
y
)
{\displaystyle =u_{x}(x,y)-iu_{y}(x,y)\,}
=
v
y
(
x
,
y
)
+
i
v
x
(
x
,
y
)
{\displaystyle =v_{y}(x,y)+iv_{x}(x,y)\,}
Since we are interested in the real line we will let
y
=
0
{\displaystyle y=0\,}
. Consequently
z
=
x
+
y
i
=
x
+
0
i
=
x
{\displaystyle z=x+yi=x+0i=x\,}
.
To simplify notation we let
F
=
f
′
{\displaystyle F=f'\,}
and we note that,
F
(
z
)
¯
=
u
x
(
x
,
−
y
)
+
i
u
y
(
x
,
−
y
)
{\displaystyle {\overline {F(z)}}=u_{x}(x,-y)+iu_{y}(x,-y)}
Now,
u
x
(
x
,
y
)
=
F
(
x
,
y
)
+
F
(
x
,
y
)
¯
2
{\displaystyle u_{x}(x,y)={F(x,y)+{\overline {F(x,y)}} \over {2}}}
and
u
y
(
x
,
y
)
=
F
(
x
,
y
)
−
F
(
x
,
y
)
¯
−
2
i
{\displaystyle u_{y}(x,y)={F(x,y)-{\overline {F(x,y)}} \over {-2i}}}
and so,
u
x
(
x
,
y
)
−
i
u
y
(
x
,
y
)
{\displaystyle u_{x}(x,y)-iu_{y}(x,y)\,}
=
F
(
x
,
y
)
+
F
(
x
,
y
)
¯
2
−
i
F
(
x
,
y
)
−
F
(
x
,
y
)
¯
−
2
i
{\displaystyle ={F(x,y)+{\overline {F(x,y)}} \over {2}}-i{F(x,y)-{\overline {F(x,y)}} \over {-2i}}}
=
F
(
x
,
y
)
2
+
F
(
x
,
y
)
¯
2
+
F
(
x
,
y
)
2
−
F
(
x
,
y
)
¯
2
{\displaystyle ={F(x,y) \over {2}}+{{\overline {F(x,y)}} \over {2}}+{F(x,y) \over {2}}-{{\overline {F(x,y)}} \over {2}}}
=
F
(
x
,
y
)
{\displaystyle =F(x,y)\,}
And so we have proved that
f
′
(
z
)
=
F
(
z
)
=
u
x
(
x
,
y
)
−
i
u
y
(
x
,
y
)
{\displaystyle f'(z)=F(z)=u_{x}(x,y)-iu_{y}(x,y)\,}
and integrating both sides and using the
y
=
0
{\displaystyle y=0\,}
substitution we get the desired result .
f
(
z
)
{\displaystyle f(z)\,}
=
∫
u
x
(
z
,
0
)
−
i
u
y
(
z
,
0
)
d
z
{\displaystyle =\int u_{x}(z,0)-iu_{y}(z,0)\,dz}
=
∫
v
y
(
z
,
0
)
+
i
v
x
(
z
,
0
)
d
z
{\displaystyle =\int v_{y}(z,0)+iv_{x}(z,0)\,dz}