Jump to content

Argument shift method: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Undid revision 525983391 by MrNiceGuy1113 (talk) doesn't seem an issue
m References: replace mr template with mr parameter in CS1 templates; using AWB
Line 4: Line 4:
==References==
==References==


*{{Citation | last1=Mishchenko | first1=A. S. | last2=Fomenko | first2=A. T. | title=Euler equation on finite-dimensional Lie groups | id={{MR|0482832}} English translation: Math. USSR-Izv. 12 (1978), no. 2, 371–389 | year=1978 | journal=Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya | issn=0373-2436 | volume=42 | issue=2 | pages=396–415}}
*{{Citation | last1=Mishchenko | first1=A. S. | last2=Fomenko | first2=A. T. | title=Euler equation on finite-dimensional Lie groups |mr=0482832 | year=1978 | journal=Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya |language=ru | issn=0373-2436 | volume=42 | issue=2 | pages=396–415}} English translation: Math. USSR-Izv. 12 (1978), no. 2, 371–389


[[Category:Lie algebras]]
[[Category:Lie algebras]]

Revision as of 23:28, 23 September 2014

In mathematics, the argument shift method is a method for constructing functions in involution with respect to Poisson–Lie brackets, introduced by Mishchenko and Fomenko (1978). They used it to prove that the Poisson algebra of a finite-dimensional semisimple Lie algebra contains a complete commuting set of polynomials.

References

  • Mishchenko, A. S.; Fomenko, A. T. (1978), "Euler equation on finite-dimensional Lie groups", Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya (in Russian), 42 (2): 396–415, ISSN 0373-2436, MR 0482832 English translation: Math. USSR-Izv. 12 (1978), no. 2, 371–389