模組:Complex Number/Functions
外观
![]() | 此模块被引用於約12,000個頁面。 為了避免造成大規模的影響,所有對此模块的編輯應先於沙盒或測試樣例上測試。 測試後無誤的版本可以一次性地加入此模块中,但是修改前請務必於討論頁發起討論。 模板引用數量會自動更新。 |
本模組定義了一些可供Module:Complex_Number系列模組使用的擴充函數。
使用條件
要能使用此函數,必須先輸入一個數字類別資料結構以及其專用的math程式庫
- 數字類別資料結構必須包含下列成員函數:
- 專用的math程式庫必須包含下列成員:
使用方法
- 初始化任何符合此擴充函數庫使用條件的數學庫
local 自訂函數庫名稱 = require("Module:Complex Number").函數庫名稱.init()
- 以Module:Complex Number的cmath為例:
local cmath = require("Module:Complex Number").cmath.init()
- 以Module:Complex Number的cmath為例:
- 初始化本擴充函數庫
自訂函數庫名稱 = require("Module:Complex Number/Functions")._init(自訂函數庫名稱, 函數庫對應的數字建構函式)
- 以上述之Module:Complex Number的cmath為例:
cmath = require("Module:Complex Number/Functions")._init(cmath, cmath.constructor)
- 以上述之Module:Complex Number的cmath為例:
- 使用擴充函數庫中的函數
- 例如:
print(cmath.factorial(5), cmath.sec(cmath.pi/4))
- 輸出:120 1.4142135623731
- 例如:
模組中的函數
三角函數擴充
- 擴充了原本未定義的三角函數
- 功能
- 輸入一個複數x,回傳其指定三角函數的值
range(x,min,max)
- 功能
- 只取函數的某一段
- 若x位於min,max區間內,則回傳x,否則回傳NaN
統計函數
- 功能
- 輸入一系列數字,回傳其指定的統計值
diff(function, x0)
integral(a, b, function, step)
- 功能
- 輸入一個函數,計算從a到b的定積分,並以step為求黎曼和的間距
- 實作方式
- en:Boole's_rule
limit(x0, way, function)
- 功能
- 輸入一個函數,計算從way方向向x0逼近的極限。
- 其中,way=1為右極限、way=-1為左極限、way=0為不分方向的極限,若左極不等於右極回傳NaN
條件式
- 常數條件輸入
- if(條件, 為真時, 為假時)、ifelse(條件1, 條件1為真, 條件2, 條件2為真, ... ,皆為假)
- 代表條件在傳入函數時已經完成計算
- 函數條件輸入
- iff(條件函數, 為真時, 為假時)、ifelsef(條件函數1, 條件1為真, 條件函數2, 條件2為真, ... ,皆為假)
- 代表條件在傳入函數時尚未計算,判斷的當下才計算。所傳入的函數需要是無參數函數,若有參數也只會被忽略。用於定義遞迴下的條件
factorial(x)
binomial(n,k)
- 功能
- 計算二項式係數
- 也可以理解為從n個元素中取出k個元素的方法數
gcd(a,b,c,...)
lcm(a,b,c,...)
- 功能
- 計算a,b,c,....等數字的最小公倍數,支援複數。
- 實作方式
- 最小公倍數#计算方法
gamma(x)
- 功能
- 輸入一個複數x,回傳其Γ函數值

- 精確度
- 有效數字14位
- 運算效率
- 平均一次運算耗時約0.3582毫秒(3.6×10−4 s、一秒可計算2,700+次),測試於2018年11月19日 (一) 06:39 (UTC)、2022年4月12日 (二) 17:54 (UTC)。
- 實作方式
- 共分成4個部分
參考文獻
- ^ Wrench, J.W. (1968). Concerning two series for the gamma function. Mathematics of Computation, 22, 617–626. and
Wrench, J.W. (1973). Erratum: Concerning two series for the gamma function. Mathematics of Computation, 27, 681–682. - ^ Viktor T. Toth. "Programmable Calculators: Calculators and the Gamma Function". 2006. (原始内容存档于2007-02-23).
- ^ F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders, eds. NIST Digital Library of Mathematical Functions.
local p = {}
local math_lib
local to_number
function p._init(_math_lib, _to_number)
local warp_funcs={"factorial","gamma","sec","csc","sech","csch","asec","acsc","asech","acsch","gd","cogd","arcgd",
"gcd","lcm","range","binomial",'minimum','maximum','average','geoaverage','var','σ',
'selectlist','for','summation','product','if','iff','ifelse','ifelsef','diff','integral', '∫', 'limit',
'hide','exprs','lastexpr',--調整條目中定義不顯示的函數
'randomseed','time','nil','null','call',
'divisorsigma','findnext','findlast','divisor'
}
for i=1,#warp_funcs do
_math_lib[ warp_funcs[i] ] = p['_' .. warp_funcs[i] ]
end
math_lib = _math_lib
to_number = _to_number
return _math_lib
end
function p._complex_number()
return p._init(require("Module:Complex Number").cmath.init(), require("Module:Complex Number").cmath.init().toComplexNumber)
end
local noop_func = function()end
function p._binomial(cal_n,cal_k)
local r_n=tonumber(tostring(cal_n))
local r_k=tonumber(tostring(cal_k))
if r_n and r_k then
if r_n>0 and r_k>=0 then
local f_n, f_k;
_,f_n = math.modf(r_n);_,f_k = math.modf(r_k)
if math.abs(f_n) < 1e-12 and math.abs(f_k) < 1e-12 then
local result = 1
if r_n == 0 then return result end
while r_k>0 do
result = result * r_n / r_k
r_n = r_n - 1
r_k = r_k - 1
end
return result
end
end
end
local n=to_number(cal_n)
local k=to_number(cal_k)
return p._factorial(n) * math_lib.inverse( p._factorial(k) ) * math_lib.inverse( p._factorial(n-k) )
end
function p._factorial(cal_z)return p._gamma(to_number(cal_z) + 1)end
function p._sec(cal_z)return math_lib.inverse( math_lib.cos( to_number(cal_z) ) )end
function p._csc(cal_z)return math_lib.inverse( math_lib.sin( to_number(cal_z) ) )end
function p._sech(cal_z)return math_lib.inverse( math_lib.cosh( to_number(cal_z) ) )end
function p._csch(cal_z)return math_lib.inverse( math_lib.sinh( to_number(cal_z) ) )end
function p._asec(cal_z)return math_lib.acos( math_lib.inverse( to_number(cal_z) ) )end
function p._acsc(cal_z)return math_lib.asin( math_lib.inverse( to_number(cal_z) ) )end
function p._asech(cal_z)return math_lib.acosh( math_lib.inverse( to_number(cal_z) ) )end
function p._acsch(cal_z)return math_lib.asinh( math_lib.inverse( to_number(cal_z) ) )end
function p._gd(cal_z)return math_lib.atan( math_lib.tanh( to_number(cal_z) * 0.5 ) ) * 2 end
function p._arcgd(cal_z)return math_lib.atanh( math_lib.tan( to_number(cal_z) * 0.5 ) ) * 2 end
function p._cogd(cal_z)local x = to_number(cal_z); return - math_lib.sgn( x ) * math_lib.log( math_lib.abs( math_lib.tanh( x * 0.5 ) ) ) end
function p._range(val,vmin,vmax)
local v_val, v_min, v_max = math_lib.tovector(to_number(val)), math_lib.tovector(to_number(vmin)), math_lib.tovector(to_number(vmax))
for i=1,#v_val do
local min_v, max_v = math.min(v_min[i],v_max[i]), math.max(v_min[i],v_max[i])
if v_val[i] < min_v or v_val[i] > max_v then return to_number(math_lib.nan) end
end
return to_number(val)
end
function p._calc_diff(_value, _left, _right, _expr)
local value = to_number(_value)
local left = to_number(_left)
local right = to_number(_right)
local left_val = _expr(value + left)
local right_val = _expr(value + right)
return (left_val - right_val) / (left - right)
end
function p._diff_abramowitz_stegun(_x, _h, _f)
local x = to_number(_x)
local h = to_number(_h)
local _1 = to_number(1) local _2 = to_number(2) local _8 = to_number(8) local _12 = to_number(12)
--if tonumber(math_lib.abs(math_lib.nonRealPart(x))) > 1e-8 then
-- --[[數值微分#複變的方法]] --(Martins, Sturdza et.al.)
-- local _i = math_lib.i or _1
-- return (math_lib.im(_f(x + _i * h))) / h
--else
--[[數值微分#高階方法]] --(Abramowitz & Stegun, Table 25.2)
return (- _f(x + _2*h) + _8*_f(x + h) - _8*_f(x - h) + _f(x - _2*h)) / (_12 * h)
--end
end
function p._calc_from(_value, _left, _right, _expr)
local value = to_number(_value)
local left = to_number(_left)
local left_val = _expr(value + left)
return left_val - p._calc_diff(_value, _left, _right, _expr) * left
end
function p._get_sample_number(_value)
local num = math_lib.re(math_lib.abs(to_number(_value)))
return (tonumber(num)~=nil) and ((num < 1e-8) and 1 or num) or 1
end
function p._diff(_expr, _value)
local func_type = type(noop_func)
local value_str = tostring(_value)
if value_str == 'nan' or value_str == '-nan'then
error("計算失敗:無效的數值 ")
return _expr
end
if value_str == 'inf' or value_str == '-inf'then
error("計算失敗:不支援無窮微分 ")
return _expr
end
local small_scale_pow = math_lib.floor(math_lib.log(p._get_sample_number(_value)) / math_lib.log(to_number(10)))-5
local small_scale = math_lib.pow(10,small_scale_pow)
if type(_expr) == func_type then
return p._diff_abramowitz_stegun(_value, small_scale, _expr)
else
return 0
end
end
function p._integral(_a,_b,func,step)
local a = to_number(_a)
local b = to_number(_b)
local begin_str = tostring(_a)
local stop_str = tostring(_b)
if begin_str == 'nan' or begin_str == '-nan' or stop_str == 'nan' or stop_str == '-nan'then
error("計算失敗:無效的迴圈 ")
return func
end
if begin_str == 'inf' or begin_str == '-inf' or stop_str == 'inf' or stop_str == '-inf'then
error("計算失敗:不支援無窮求積 ")
return func
end
local n = tonumber(step) or 2000
local f = (type(func)==type(noop_func))and func or (function()return to_number(func) or 0 end)
local h = (b-a)/n
local x0, xn = a, b
local _2, _7, _12, _14, _32, _45 =
to_number(2), to_number(7), to_number(12), to_number(14), to_number(32), to_number(45)
local i0, i1, i2 = 1, 2, 4
local sumfxi0, sumfxi1, sumfxi2 = to_number(0), to_number(0), to_number(0)
for i=1,n do -- Boole's rule
if i0 > n-1 and i1 > n-2 and i2 > n-4 then break end
local xi0, xi1, xi2 = a + i0 * h, a + i1 * h, a + i2 * h
if i0 <= n-1 then sumfxi0 = sumfxi0 + f(xi0) end
if i1 <= n-2 then sumfxi1 = sumfxi1 + f(xi1) end
if i1 <= n-4 then sumfxi2 = sumfxi2 + f(xi2) end
i0 = i0 + 2
i1 = i1 + 4
i2 = i2 + 4
end
return (_2 * h / _45) * (_7 * (f(x0) + f(xn)) + _32 * sumfxi0 + _12 * sumfxi1 + _14 * sumfxi2)
end
p['_∫'] = p._integral
function p._limit(_value, _way, _expr)
local way = to_number(_way)
local func_type = type(noop_func)
local value_str = tostring(_value)
if value_str == 'nan' or value_str == '-nan'then
error("計算失敗:無效的數值 ")
return _expr
end
if value_str == 'inf' or value_str == '-inf'then
error("計算失敗:不支援無窮極限 ")
return _expr
end
local small_scale_pow = tonumber(math_lib.re(math_lib.floor(math_lib.log(p._get_sample_number(_value)) / math_lib.log(to_number(10))))-6)
local small_scale = math.pow(10,small_scale_pow)
local small_scale_a = small_scale / 10
local small_scale_c = small_scale * 10
if type(_expr) == func_type then
if math_lib.re(math_lib.abs(way)) < 1e-10 then
local left = p._calc_from(_value, -small_scale, -small_scale_a, _expr)
local right = p._calc_from(_value, small_scale_a, small_scale, _expr)
if math_lib.re(math_lib.abs(left - right)) < small_scale_c then
return (left + right) / 2
else
return math_lib.nan
end
else
return (math_lib.re(way) > 0) and p._calc_from(_value, small_scale_a, small_scale, _expr) or
p._calc_from(_value, -small_scale, -small_scale_a, _expr)
end
else
return _expr
end
end
p._nil = "nil"
p._null = "nil"
function p._if(_expr, _true_expr, _false_expr)
return p._ifelse_func(false, _expr, _true_expr, _false_expr)
end
function p._iff(_expr, _true_expr, _false_expr)
return p._ifelse_func(true, _expr, _true_expr, _false_expr)
end
function p._ifelse(...)
return p._ifelse_func(false, ...)
end
function p._ifelsef(...)
return p._ifelse_func(true, ...)
end
function p._ifelse_func(is_func, ...)
local func = noop_func
local exprlist = {...}
local last_else = #exprlist % 2 == 1
local max_num = (last_else and (#exprlist - 1) or #exprlist) / 2
for i=1,max_num do
local _expr = exprlist[i * 2 - 1]
local expr = (type(_expr) == type(func)) and _expr() or _expr
local expr_true = exprlist[i * 2]
local _chk_flag = math_lib.abs(to_number(expr)) > 1e-14;
if _chk_flag then
return (type(expr_true) == type(func) and is_func) and expr_true() or expr_true
end
end
if last_else then
local expr_false = exprlist[#exprlist]
return (type(expr_false) == type(func) and is_func) and expr_false() or expr_false
end
local _expr = exprlist[1]
return (type(_expr) == type(func)) and _expr() or _expr
end
function p._for(_start,_end,_step,_expr)
local _begin = to_number(_start);
local _stop = to_number(_end);
local _do_step = to_number(_step);
local check_loop = (_stop - _begin) / _do_step
local begin_str = tostring(_begin)
local stop_str = tostring(_stop)
if math_lib.re(math_lib.abs(_do_step))<=1e-14 or math_lib.re(check_loop) < 0 or
begin_str == 'nan' or begin_str == '-nan' or begin_str == 'inf' or begin_str == '-inf' or
stop_str == 'nan' or stop_str == '-nan' or stop_str == 'inf' or stop_str == '-inf'then
error("計算失敗:無效的迴圈 ")
return _expr
end
if type(_expr) == type(noop_func) then
local it = _begin
local init = to_number(0)
while math_lib.re(it) <= math_lib.re(_stop) do
init = _expr(to_number(it),to_number(init))
it = it + _do_step
end
return init
else
return _expr
end
end
function p._summation(_start,_end,_expr)
local _begin = to_number(_start);
local _stop = to_number(_end);
local _do_step = to_number(1);
local check_loop = (_stop - _begin) / _do_step
local begin_str = tostring(_begin)
local stop_str = tostring(_stop)
if math_lib.re(math_lib.abs(_do_step))<=1e-14 or math_lib.re(check_loop) < 0 or
begin_str == 'nan' or begin_str == '-nan' or stop_str == 'nan' or stop_str == '-nan'then
error("計算失敗:無效的迴圈 ")
return _expr
end
if begin_str == 'inf' or begin_str == '-inf' or stop_str == 'inf' or stop_str == '-inf'then
error("計算失敗:不支援無窮求和 ")
return _expr
end
local func_type = type(noop_func)
local it = _begin
local init = to_number(0)--空和
while math_lib.re(it) <= math_lib.re(_stop) do
init = init + ((type(_expr) == func_type) and _expr(to_number(it)) or to_number(_expr))--累加
it = it + _do_step
end
return init
end
function p._product(_start,_end,_expr)
local _begin = to_number(_start);
local _stop = to_number(_end);
local _do_step = to_number(1);
local check_loop = (_stop - _begin) / _do_step
local begin_str = tostring(_begin)
local stop_str = tostring(_stop)
if math_lib.re(math_lib.abs(_do_step))<=1e-14 or math_lib.re(check_loop) < 0 or
begin_str == 'nan' or begin_str == '-nan' or stop_str == 'nan' or stop_str == '-nan'then
error("計算失敗:無效的迴圈 ")
return _expr
end
if begin_str == 'inf' or begin_str == '-inf' or stop_str == 'inf' or stop_str == '-inf'then
error("計算失敗:不支援無窮求積 ")
return _expr
end
local func_type = type(noop_func)
local it = _begin
local init = to_number(1)--空積
while math_lib.re(it) <= math_lib.re(_stop) do
init = init * ((type(_expr) == func_type) and _expr(to_number(it)) or to_number(_expr))--累乘
it = it + _do_step
end
return init
end
function p._randomseed(_seed)
local seed = tonumber(tostring(_seed)) or (os.time() * os.clock())
math.randomseed(math.floor(seed))
return to_number(seed)
end
function p._time()
return to_number(os.time())
end
function p._call(func, ...)
if type(func) == type(noop_func) then return func(...)end
return func
end
function p._hide(...)
local input_args = {...}
return to_number(input_args[#input_args])
end
p._exprs = p._hide
p._lastexpr = p._hide
function p._selectlist(x,...)
local input_args = {...}
local y = input_args[1]
local z = input_args[2]
local id_x = tonumber(tostring(x)) or 0
if type(y)==type({}) and #y >= id_x and id_x>0 then
if id_x <= 0 then id_x = id_x + #y + 1 end
return y[id_x] or tonumber('nan')
elseif type(z)==type({}) and #z >= id_x then
local id_y = tonumber(tostring(y)) or 0
if id_x <= 0 then id_x = id_x + #z + 1 end
if type(z[id_x])==type({}) and #(z[id_x]) >= id_y and id_y>0 then
if id_y <= 0 then id_y = id_y + #(z[id_x]) + 1 end
return (z[id_x][id_y]) or tonumber('nan')
end
end
id_x = tonumber(tostring(x)) or 0
if id_x <= 0 then id_x = id_x + #input_args + 1 end
return input_args[id_x] or tonumber('nan')
end
function p._minimum(...) return p.minmax('min', ...) end
function p._maximum(...) return p.minmax('max', ...) end
function p._average(...) return p.minmax('avg', ...) end
function p._geoaverage(...) return p.minmax('gavg', ...) end
function p._var(...) return p.minmax('var', ...) end
p['_σ'] = function(...) return p.minmax('σ',...) end
function p.minmax(mode,...)
local tonumber_lib = to_number or tonumber
local lib_math = math_lib or math
local args, tester = { ... }, {tonumber("nan")}
local sum, prod, count, sumsq, sig = tonumber_lib(0), tonumber_lib(1), 0, tonumber_lib(0), (mode =='var'or mode=='σ')
local mode_map = {}
local non_nan
for i=1,#args do
local got_number, calc_number = tonumber(tostring(args[i])) or tonumber("nan"), tonumber_lib(args[i])
if calc_number then sum, prod, count = calc_number + sum, calc_number * prod, count + 1 end
if sig == true then
local x_2 = calc_number * calc_number
if lib_math.dot then
x_2 = lib_math.dot(calc_number, lib_math.conjugate(calc_number))
end
sumsq = sumsq + x_2
end
mode_map[args[i]] = (mode_map[args[i]]or 0) + 1
if tostring(got_number):lower()~="nan" and type(non_nan) == type(nil) then
tester[1], non_nan = got_number, got_number
else tester[#tester + 1] = got_number end
end
local modes={min=math.min,max=math.max,sum=function()return sum end,prod=function()return prod end,count=function()return count end,
avg=function()return sum*tonumber_lib(1/count) end,
gavg=function()return lib_math.pow(prod,tonumber_lib(1/count)) end,
var=function()return sumsq*tonumber_lib(1/count)-sum*sum*tonumber_lib(1/(count*count)) end,
['σ']=function()return lib_math.sqrt(sumsq*tonumber_lib(1/count)-sum*sum*tonumber_lib(1/(count*count))) end,
mode=function()
local max_count, mode_data = 0, ''
for mkey, mval in pairs(mode_map) do
if mval > max_count then
max_count = mval
mode_data = mkey
end
end
return mode_data
end
}
if tostring(tester[1]):lower()=="nan" and mode:sub(1,1)=='m' then
local error_msg = ''
for i=1,#args do if error_msg~=''then error_msg = error_msg .. '、 ' end
error_msg = error_msg .. tostring(args[i])
end
error("給定的數字 " .. error_msg .." 無法比較大小")
end
if type(modes[mode]) ~= type(tonumber) then
error("未知的統計方式 '" .. mode .."' ")
end
return modes[mode](unpack(tester))
end
local function fold(func, ...)
-- Use a function on all supplied arguments, and return the result. The function must accept two numbers as parameters,
-- and must return a number as an output. This number is then supplied as input to the next function call.
local vals = {...}
local count = #vals -- The number of valid arguments
if count == 0 then return
-- Exit if we have no valid args, otherwise removing the first arg would cause an error.
nil, 0
end
local ret = table.remove(vals, 1)
for _, val in ipairs(vals) do
ret = func(ret, val)
end
return ret, count
end
--[[
Fold arguments by selectively choosing values (func should return when to choose the current "dominant" value).
]]
local function binary_fold(func, ...)
local value = fold((function(a, b) if func(a, b) then return a else return b end end), ...)
return value
end
local Reciprocal_gamma_coeff = {1,0.577215664901532860607,-0.655878071520253881077,-0.0420026350340952355290,0.166538611382291489502,-0.0421977345555443367482,-0.00962197152787697356211,0.00721894324666309954240,-0.00116516759185906511211,-0.000215241674114950972816,0.000128050282388116186153,-0.0000201348547807882386557,-1.25049348214267065735e-6,1.13302723198169588237e-6,-2.05633841697760710345e-7,6.11609510448141581786e-9,5.00200764446922293006e-9,-1.18127457048702014459e-9,1.04342671169110051049e-10,7.78226343990507125405e-12,-3.69680561864220570819e-12,5.10037028745447597902e-13,-2.05832605356650678322e-14,-5.34812253942301798237e-15,1.22677862823826079016e-15,-1.18125930169745876951e-16,1.18669225475160033258e-18,1.41238065531803178156e-18,-2.29874568443537020659e-19,1.71440632192733743338e-20}
--https://oeis.org/A001163 、 https://oeis.org/A001164
local stirling_series_coeff = {1,0.0833333333333333333333333,0.00347222222222222222222222,-0.00268132716049382716049383,-0.000229472093621399176954733,0.000784039221720066627474035,0.0000697281375836585777429399,-0.000592166437353693882864836,-0.0000517179090826059219337058,0.000839498720672087279993358,0.0000720489541602001055908572,-0.00191443849856547752650090,-0.000162516262783915816898635,0.00640336283380806979482364,0.000540164767892604515180468,-0.0295278809456991205054407,-0.00248174360026499773091566,0.179540117061234856107699,0.0150561130400264244123842,-1.39180109326533748139915,-0.116546276599463200850734}
function p._gamma_high_imag(cal_z)
local z = to_number(cal_z)
if z ~= nil and math_lib.abs(math_lib.nonRealPart(z)) > 2 then
local inv_z = math_lib.inverse(z)
return math_lib.sqrt((math_lib.pi * 2) * inv_z) * math_lib.pow(z * math_lib.exp(-1) *
math_lib.sqrt( (z * math_lib.sinh(inv_z) ) + math_lib.inverse(to_number(810) * z * z * z * z * z * z) ),z)
end
return nil
end
function p._gamma_morethen_lua_int(cal_z)
local z = to_number(cal_z) - to_number(1)
local lua_int_term = 18.1169 --FindRoot[ Factorial[ x ] == 2 ^ 53, {x, 20} ]
if math_lib.abs(z) > (lua_int_term - 1) or (math_lib.re(z) < 0 and math_lib.abs(math_lib.nonRealPart(z)) > 1 ) then
local sum = 1
for i = 1, #stirling_series_coeff - 1 do
local a, n = to_number(z), tonumber(i) local y, k, f = to_number(1), n, to_number(a)
while k ~= 0 do
if k % 2 == 1 then y = y * f end
k = math.floor(k / 2); f = f * f
end
sum = sum + stirling_series_coeff[i + 1] * math_lib.inverse(y)
end
return math_lib.sqrt( (2 * math.pi) * z ) * math_lib.pow( z * math.exp(-1), z ) * sum
end
return nil
end
function p._gamma_abs_less1(cal_z)
local z = to_number(cal_z)
if (math.abs(math_lib.re(z)) <=1.001) then
if math_lib.abs(math_lib.nonRealPart(z)) < 1e-14 and ( (math.abs(math_lib.re(z) - 1) < 1e-14) or (math.abs(math_lib.re(z) - 2) < 1e-14) ) then return to_number(1)end
return math_lib.inverse(p._recigamma_abs_less1(z))
end
return nil
end
function p._recigamma_abs_less1(z)
local result = to_number(0)
for i=1,#Reciprocal_gamma_coeff do
result = result + Reciprocal_gamma_coeff[i] * math_lib.pow(z,i)
end
return result
end
function p._gamma(cal_z)
local z = to_number(cal_z)
if math_lib.abs(math_lib.nonRealPart(z)) < 1e-14 and ((math_lib.re(z) < 0 or math.abs(math_lib.re(z)) < 1e-14)
and math.abs(math.floor(math_lib.re(z)) - math_lib.re(z)) < 1e-14 ) then return tonumber("nan") end
local pre_result = p._gamma_morethen_lua_int(z) or p._gamma_high_imag(z) or p._gamma_abs_less1(z)
if pre_result then return pre_result end
local real_check = math_lib.re(z)
local loop_count = math.floor(real_check)
local start_number, zero_flag = z - loop_count, false
if math_lib.abs(start_number) <= 1e-14 then start_number = to_number(1);zero_flag = true end
local result = math_lib.inverse(p._recigamma_abs_less1(start_number))
if math_lib.abs(math_lib.nonRealPart(z)) < 1e-14 and ((math_lib.re(z) > 1e-14 )and math.abs(math.floor(math_lib.re(z)) - math_lib.re(z)) < 1e-14 ) then result = to_number(1) end
local j = to_number(start_number)
for i=1,math.abs(loop_count) do
if loop_count > 0 then result = result * j else result = result * math_lib.inverse(j-1) end
if zero_flag==true and loop_count > 0 then zero_flag=false else if loop_count > 0 then j = j + 1 else j = j - 1 end end
end
if math_lib.abs(math_lib.nonRealPart(z)) < 1e-14 and ((math_lib.re(z) > 1e-14 )and math.abs(math.floor(math_lib.re(z)) - math_lib.re(z)) < 1e-14 ) then return math_lib.floor(result) end
return result
end
local function findGcd(a, b)
local r, oldr = to_number(b), to_number(a)
while math_lib.abs(r) > 1e-6 do local mod_val = oldr % r oldr, r = to_number(r), mod_val end
if math_lib.abs(math_lib.nonRealPart(oldr)) < 1e-14 and (math_lib.re(oldr) < 0 ) then oldr = -oldr end
return oldr
end
function p._gcd(...)
local result, count = fold(findGcd, ...)
return result
end
function p._lcm(...)
local function findLcm(_a, _b)
local a, b = to_number(_b), to_number(_a)
return math_lib.abs(a * b) / findGcd(a, b)
end
local result, count = fold(findLcm, ...)
return result
end
function p._findnext(func, x)
local it = to_number(x) + 1
if type(func) ~= type(noop_func) then
if math_lib.abs(to_number(func)) < 1e-14 then
return to_number("inf")
else
return it
end
end
local checker = func(it)
while math_lib.abs(to_number(checker)) < 1e-14 do
it = it + 1
checker = func(it)
end
return it
end
function p._findlast(func, x)
local it = to_number(x) - 1
if type(func) ~= type(noop_func) then
if math_lib.abs(to_number(func)) < 1e-14 then
return to_number("-inf")
else
return it
end
end
local checker = func(it)
while math_lib.abs(to_number(checker)) < 1e-14 do
it = it - 1
checker = func(it)
end
return it
end
local function get_divisor_combination(n)
local lib_factor = require('Module:Factorization')
local is_complex = math_lib.abs(math_lib.nonRealPart(n)) > 1e-14
local factors
if math_lib.abs(math_lib.floor(n)-n) < 1e-14 then
factors = (lib_factor[is_complex and "_gaussianFactorization" or "_factorization"])(
is_complex and n or tonumber(tostring(n))
)
else factors = {[n]=1} end
local gened=require('Module:Combination').getCombinationGenerator()
gened:init(factors,0)
return gened:findSubset()
end
function p._divisor(_n, _x)
local x = to_number(_x)
local n = to_number(_n)
if math_lib.abs(n) < 1e-14 then return 0 end
local combination = get_divisor_combination(n)
local divisors = {}
for i=1,#combination do
local divisor = to_number(1)
for j=1,#(combination[i]) do
divisor = divisor * to_number(combination[i][j])
end
divisors[#divisors+1] = divisor
end
table.sort(divisors, function(a,b) return math_lib.abs(a) < math_lib.abs(b) end)
return divisors[math_lib.abs(x)] or 0
end
function p._divisorsigma(_x, _n)
local x = to_number(1), n
if _n == nil then
n = to_number(_x)
else
x = to_number(_x)
n = to_number(_n)
end
if math_lib.abs(n) < 1e-14 then return 0 end
local is_complex = math_lib.abs(math_lib.nonRealPart(n)) > 1e-14
if not is_complex then n = math_lib.abs(n) end
local combination = get_divisor_combination(n)
local sum = to_number(0)
for i=1,#combination do
local divisor = to_number(1)
for j=1,#(combination[i]) do
divisor = divisor * to_number(combination[i][j])
end
sum = sum + math_lib.pow(divisor, x)
end
return sum
end
return p