Jump to content

Energy meteorology

From Wikipedia, the free encyclopedia

Energy meteorology is a branch of meteorology. It deals with the meteorological and climatological[1] services for applications in the renewable energy sector or other weather-dependent elements in the energy system.

Background

[edit]

The renewable energy sources wind and solar (especially photovoltaics) have made an increasing contribution to electricity generation in recent years.[2] Both energy sources are weather-dependent and therefore reliable meteorological information is of increasing importance for the planning and operation of the energy system.[3] Similarly, energy consumption (e.g. for heating and cooling)[4] or the production of biomass are dependent on the prevailing weather conditions. Energy meteorology is dedicated to such requirements and is thus an application-oriented subfield of meteorology.

Methods

[edit]

In the renewable energy context, the energy sector requires meteorological information on various time scales,[5] for example, long-term observation data for evaluating locations or weather forecasts for estimating the energy feed-in for the coming days.

Energy meteorological tasks are therefore addressed using observational data as well as numerical weather predictions.[6] For the evaluation of long-term weather conditions, various models, such as reanalyses,[7][8] are used in addition to direct observations.

To estimate the impacts of climate change on the energy sector, climate projections based on climate models can be used.[9]

Further reading on energy meteorology

[edit]
  • Lars E. Olsson (1994), "ENERGY-METEOROLOGY: A new discipline", Renewable Energy, vol. 5–8, no. 5, pp. 1243–1246, Bibcode:1994REne....5.1243O, doi:10.1016/0960-1481(94)90157-0
  • World Meteorological Organization (2011), "Meteorology and the energy sector – a WMO perspective", WMO Bulletin, vol. 60, no. 2, pp. 73–79

References

[edit]
  1. ^ World Meteorological Organization (2022), "2022 State of Climate Services:Energy", WMO Report, vol. 1301, ISBN 978-92-63-11301-6
  2. ^ IRENA (2024), Renewable capacity statistics 2024, International Renewable Energy Agency, Abu Dhabi, ISBN 978-92-9260-587-2
  3. ^ Alberto Troccoli, Tobias Fuchs, Elena Akentyeva, Faten Atig Bahar, Carlo Buontempo, Sven-Erick Gryning, Han Huang, Jinkyu Hong, Kristian Horvath, Raphael Legrand, Christopher Oludhe, Sarah Osima, Natasha Sadoff, Henerica Tazvinga, Wai-Kin Wong, Dong Zhao and José Alberto Zúñiga Mora, Roberta Boscolo, Hamid Bastani, Victoria Alexeeva, Amir Delju and Richaihu Wu, Eulàlia Baulenas Serra, Hannah Bloomfield, Davor Bošnjak, Roger Dargaville, Matteo De Felice, Laurent Dubus, Vanessa Fundel, Clare Goodess, Youchen Guo, Sue Ellen Haupt, Cathen Ho, Frank Kaspar, Merlinde Kay, Nico Kroese, Arun Kumar, Joseph Lam, Cheuk-wing Lee, Vivian Leung, Changyi Liu, Kwok-yau Lo, Chi-ming Lok, Andreja Lončarek Rajšl, Oscar Martinez-Alvadaro, Stefano Materia, Elah Matt, Miriam Murambadoro, Huu-An Pham, Rafaella Scheer, Luwei Shen, Zvonimir Škarić, Amen Y.K. Tong, Mélodie Trolliet, Simon Tsui, Ilaria Vigo, Frederic Vitart, Hanxiaoxin Wang, Matteo Zampieri, Yongshan Zhang (2023), "Integrated Weather and Climate Services in Support of Net Zero Energy Transition - Best Practices from the WMO Commission for Weather, Climate, Water and Related Environmental Services and Applications", WMO Report, vol. 1312, ISBN 978-92-63-11312-2{{citation}}: CS1 maint: multiple names: authors list (link)
  4. ^ World Meteorological Organization (2011), "Meteorology and the energy sector – a WMO perspective", WMO Bulletin, vol. 60, no. 2, pp. 73–79
  5. ^ Dubus, L., Muralidharan, S., Troccoli, A. (2018), "What does the energy industry require from meteorology?.", Weather & Climate Services for the Energy Industry, Palgrave Macmillan, Cham., pp. 41–63, doi:10.1007/978-3-319-68418-5_4, ISBN 978-3-319-68417-8{{citation}}: CS1 maint: multiple names: authors list (link)
  6. ^ Tobias Heppelmann, Andrea Steiner, Stephan Vogt (2017-06-14), "Application of numerical weather prediction in wind power forecasting: Assessment of the diurnal cycle", Meteorologische Zeitschrift, vol. 26, no. 3, pp. 319–331, Bibcode:2017MetZe..26..319H, doi:10.1127/metz/2017/0820{{citation}}: CS1 maint: multiple names: authors list (link)
  7. ^ Frank Kaspar, Deborah Niermann, Michael Borsche, Stephanie Fiedler, Jan Keller, Roland Potthast, Thomas Rösch, Thomas Spangehl, Birger Tinz (2020), "Regional atmospheric reanalysis activities at Deutscher Wetterdienst: review of evaluation results and application examples with a focus on renewable energy", Advances in Science and Research, vol. 17, Copernicus GmbH, pp. 115–128, Bibcode:2020AdSR...17..115K, doi:10.5194/asr-17-115-2020{{citation}}: CS1 maint: multiple names: authors list (link)
  8. ^ Spangehl, T., Borsche, M., Niermann, D., Kaspar, F., Schimanke, S., Brienen, S., Möller, T., Brast, M. (2023), "Intercomparing the quality of recent reanalyses for offshore wind farm planning in Germany's exclusive economic zone of the North Sea", Advances in Science and Research, vol. 20, Copernicus GmbH, pp. 109–128, Bibcode:2023AdSR...20..109S, doi:10.5194/asr-20-109-2023{{citation}}: CS1 maint: multiple names: authors list (link)
  9. ^ K. van der Wiel, L. P. Stoop, B. R. H. van Zuijlen, R. Blackport, M. A. van den Broek, F. M. Selten (2019), "Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall", Renewable and Sustainable Energy Reviews, vol. 111, pp. 261–275, Bibcode:2019RSERv.111..261V, doi:10.1016/j.rser.2019.04.065, hdl:10871/39953{{citation}}: CS1 maint: multiple names: authors list (link)