Formyl peptide receptor 2
N-formyl peptide receptor 2 (FPR2) is a G-protein coupled receptor (GPCR) located on the surface of many cell types of various animal species. The human receptor protein is encoded by the FPR2 gene and is activated to regulate cell function by binding any one of a wide variety of ligands including not only certain N-Formylmethionine-containing oligopeptides such as N-Formylmethionine-leucyl-phenylalanine (FMLP) but also the polyunsaturated fatty acid metabolite of arachidonic acid, lipoxin A4 (LXA4) and long chain Ceramide .[5][6][7] Because of its interaction with lipoxin A4, FPR2 is also commonly named the ALX/FPR2 or just ALX receptor.
Nomenclature
[edit]Confusingly, there are two "standard" nomenclatures for FPR receptors and their genes, the first used, FPR, FPR1, and FPR2 and its replacement, FPR1, FPR2 (this gene), and FPR3. The latter nomenclature is recommended by the International Union of Basic and Clinical Pharmacology[8] and is used here. Other previously used names for FPR1 are NFPR, and FMLPR; for FPR2 are FPRH1, FPRL1, RFP, LXA4R, ALXR, FPR2/ALX, HM63, FMLPX, and FPR2A; and for FPR3 are FPRH2, FPRL2, and FMLPY.[8]
Gene
[edit]Human
[edit]The human FPR2 gene encodes the 351 amino acid receptor, FPR2, within an intronless open reading frame. It forms a cluster with FPR1 and FPR3 genes on chromosome 19q.13.3 in the order of FPR1, FPR2, and FPR3; this cluster also includes the genes for two other chemotactic factor receptors, the G protein-coupled C5a receptor (also termed CD88) and a second C5a receptor, GPR77 (i.e. C5a2 or C5L2), which has the structure of G protein receptors but apparently does not couple to G proteins and is of uncertain function.[9] The FPR1, FPR2, and FPR3 paralogs, based on phylogenetic analysis, originated from a common ancestor with early duplication of FPR1 and FPR2/FPR3 splitting with FPR3 originating from the latest duplication event near the origin of primates.[10]
Mouse
[edit]Mice have no less than 7 FPR receptors encoded by 7 genes that localize to chromosome 17A3.2 in the following order: Fpr1, Fpr-rs2 (or fpr2), Fpr-rs1 (or LXA4R), Fpr-rs4, Fpr-rs7, Fpr-rs7, Fpr-rs6, and Fpr-rs3; this locus also contains Pseudogenes ψFpr-rs2 and ψFpr-rs3 (or ψFpr-rs5) which lie just after Fpr-rs2 and Fpr-rs1, respectively. The 7 mouse FPR receptors have ≥50% amino acid sequence identity with each other as well as with the three human FPR receptors.[11] Fpr2 and mFpr-rs1 bind with high affinity and respond to lipoxins but have little or no affinity for, and responsiveness to, formyl peptides; they thereby share key properties with human FPR2;[12][13][14]
Rat
[edit]Rats express an ortholog of FPR2 (74% amino acid sequence identity) with high affinity for lipoxin A4.[11]
Expression
[edit]The FPR2 receptor is expressed on human neutrophils, eosinophils, monocytes, macrophages, T cells, synovial fibroblasts, and intestinal and airway epithelium.[15]
FPL2 is often co-expressed with FPR1. It is widely expressed by circulating blood neutrophils, eosinophils, basophils, and monocytes; lymphocyte T cells and B cells; tissue Mast cells, macrophages, fibroblasts, and immature dendritic cells; vascular endothelial cells; neural tissue glial cells, astrocytes, and neuroblastoma cells; liver hepatocytes; various types of epithelial cells; and various types of multicellular tissues.[11][16][17][18][19]
Function
[edit]Many oligopeptides with an N-Formylmethionine N-terminal residue—such as the prototypical tripeptide N-Formylmethionine-leucyl-phenylalanine (FMLP)—are products of bacterial protein synthesis. These formylated peptides stimulate granulocytes to migrate directionally (see chemotaxis), and to engage in phagocytosis and bacterial killing, thereby contributing to host defense by directing the innate immune response during acute inflammation.
Early studies indicated that these peptides act through a receptor-mediated mechanism. To investigate this, researchers used the human leukocyte cell line HL-60, which consists of promyelocytes that do not respond to FMLP. Upon differentiation into granulocytes, which do respond, the cells were used to partially purify[20] and clone a gene. When this gene was transfected into FMLP-unresponsive cells, it conferred responsiveness to FMLP and other N-formyl oligopeptides.[21][22][23][24][25] This receptor was initially named the formyl peptide receptor (FPR). Subsequently, two additional genes were cloned, encoding receptor-like proteins with high sequence similarity to FPR.[26][27][28] These three receptors were initially named inconsistently but are now designated formyl peptide receptor 1 (FPR1), formyl peptide receptor 2 (FPR2; this gene), and formyl peptide receptor 3 (FPR3). FPR2 and FPR3 are grouped with FPR1 based on sequence homology, not ligand specificity.
Indeed, FPR2 exhibits markedly different ligand preferences and biological functions compared to FPR1, while FPR3 does not bind FMLP or most other N-formyl peptides that activate FPR1 or FPR2.[8] A major function of FPR2 is to bind certain specialized pro-resolving mediators (SPMs)—including lipoxin (Lx)A4, AT-LxA4 (arachidonic acid metabolites), and resolvin D1 (RvD1), RvD2, and AT-RvD1 (derived from docosahexaenoic acid)—and to mediate their inflammation-resolving effects. In addition, FPR2 also responds to a wide range of peptides and proteins that may promote inflammation or regulate unrelated processes. The physiological role of FPR3 remains unclear.
Knockout studies
[edit]The large number of mouse compared to human FPR receptors makes it difficult to extrapolate human FPR functions based on genetic (e.g. gene knockout or forced overexpression) or other experimental manipulations of the FPR receptors in mice. In any event, combined disruption of the Fpr2 and Fpr3 genes causes mice to mount enhanced acute inflammatory responses as evidenced in three models, intestine inflammation caused by mesenteric artery ischemia-reperfusion, paw swelling caused by carrageenan injection, and arthritis caused by the intraperatoneal injection of arthritis-inducing serum.[29] Since Fpr2 gene knockout mice exhibit a faulty innate immune response to intravenous listeria monocytogenes injection,[30] these results suggest that the human FPR2 receptor and mouse Fpr3 receptor have equivalent functions in dampening at least certain inflammatory response.
Endogenous ligands
[edit]FPR2, also known as the LXA4 receptor or ALX/FPR2, was initially identified as a high-affinity receptor for the arachidonic acid metabolite lipoxin A4 (LXA4). It was later found to also bind the related metabolites aspirin-triggered lipoxin A4 (ATL, or 15-epi-LXA4), and the docosahexaenoic acid derivative resolvin D1 (RvD1). These three lipid mediators act to inhibit and resolve inflammation.[31][32][33][34][35]
Originally classified as an orphan receptor and termed RFP, FPR2 was discovered by screening myeloid cell-derived libraries using a formyl-methionyl-leucyl-phenylalanine (FMLP)-like probe.[36][37][38]
In addition to LXA4, ATL, RvD1, and FMLP, FPR2 interacts with a wide range of polypeptides, proteins, and their derivatives. These ligands contribute to processes beyond inflammation, including obesity, neurodegeneration, reproduction, and cancer.[39] Nevertheless, FPR2 is best known for mediating the anti-inflammatory and pro-resolving actions of lipoxins and resolvins.[40][41]
A partial list of FPR2/ALX ligands and their proposed inflammatory effects (based on in vitro and animal studies) includes:
- Bacterial and mitochondrial N-formyl peptides such as FMLP – pro-inflammatory (though possibly less physiologically significant than lipid-derived ligands);
- Hp(2–20), from Helicobacter pylori – pro-inflammatory;
- HIV-1-derived peptides: T21/DP107 and N36 (from gp41), F peptide (from gp120), and V3 peptide (from the MN strain) – unknown effects;
- CCL23β (amino acids 22–137), a splice variant of CCL23, and SHAAGtide, a proteolytic product – pro-inflammatory;
- Annexin A1-derived peptides (Ac2–26 and Ac9–25) – dose-dependent; anti-inflammatory at low concentrations, pro-inflammatory at high concentrations;
- Amyloid β(1–42) and PrP(106–126) (from prion protein) – pro-inflammatory, suggesting roles in Alzheimer's disease, Parkinson's disease, Huntington's disease, and prion diseases such as Creutzfeldt–Jakob disease and Kuru;
- Humanin, a neuroprotective peptide – anti-inflammatory, counteracting amyloid-induced inflammation;
- Cleaved fragments of UPARAP (uPAR): D2D3(88–274) and uPAR(84–95) – pro-inflammatory;
- Antimicrobial peptides: LL-37 and CRAMP (human/rat cathelicidins), Pleurocidins (from fish), and Temporin A (frog-derived) – pro-inflammatory;[19]
- Pituitary adenylate cyclase-activating polypeptide 27 – pro-inflammatory;[8][42]
- Long-chain ceramides (C14–C20) – bind FPR2 in beige and brown adipocytes to inhibit thermogenesis.[43]
Anti-inflammatory drugs
[edit]Dual and delective FPR2 Agonists in clinical development:[44]
- ACT-389949: A small-molecule FPR2 agonist that has completed phase 1 clinical trials
- BMS-986235: Another FPR2 agonist in phase 1 trials, with evidence of resolving cardiac inflammation and improving cardiac function in preclinical models.
- BLXA4 (Methyl ester-benzo-lipoxin A4): An LXA4 analog tested in phase 1 clinical trials for gingival inflammation, shown to reduce local inflammation.
Rezuforimod is a potent and selective FPR2 agonist that inhibits neutrophil adhesion and exhibits broad anti-inflammatory activity.[45]
See also
[edit]- Eicosanoid receptor
- Formyl peptide receptor
- Lipoxin
- Resolvin
- Formyl peptide receptor 1
- Formyl peptide receptor 3
References
[edit]- ^ a b c GRCh38: Ensembl release 89: ENSG00000171049 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000052270 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Lin H (2025-03-13). "Metabolic signaling of ceramides through the FPR2 receptor inhibits adipocyte thermogenesis". Science. 388 (6746). Bibcode:2025Sci...388o4188L. doi:10.1126/science.ado4188. PMID 40080544.
- ^ Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN (Mar 1997). "Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor". The Journal of Biological Chemistry. 272 (11): 6972–6978. doi:10.1074/jbc.272.11.6972. PMID 9054386.
- ^ "Entrez Gene: FPR2 formyl peptide receptor 2".
- ^ a b c d Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, et al. (Jun 2009). "International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family". Pharmacological Reviews. 61 (2): 119–161. doi:10.1124/pr.109.001578. PMC 2745437. PMID 19498085.
- ^ Li R, Coulthard LG, Wu MC, Taylor SM, Woodruff TM (Mar 2013). "C5L2: a controversial receptor of complement anaphylatoxin, C5a". FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology. 27 (3): 855–864. doi:10.1096/fj.12-220509. PMID 23239822. S2CID 24870278.
- ^ Muto Y, Guindon S, Umemura T, Kőhidai L, Ueda H (Feb 2015). "Adaptive evolution of formyl peptide receptors in mammals". Journal of Molecular Evolution. 80 (2): 130–141. Bibcode:2015JMolE..80..130M. doi:10.1007/s00239-015-9666-z. PMID 25627928. S2CID 14266716.
- ^ a b c Migeotte I, Communi D, Parmentier M (Dec 2006). "Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses". Cytokine & Growth Factor Reviews. 17 (6): 501–519. doi:10.1016/j.cytogfr.2006.09.009. PMID 17084101.
- ^ He HQ, Liao D, Wang ZG, Wang ZL, Zhou HC, Wang MW, et al. (Feb 2013). "Functional characterization of three mouse formyl peptide receptors". Molecular Pharmacology. 83 (2): 389–398. doi:10.1124/mol.112.081315. PMC 4170117. PMID 23160941.
- ^ Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN (May 1997). "Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors". The Journal of Experimental Medicine. 185 (9): 1693–1704. doi:10.1084/jem.185.9.1693. PMC 2196289. PMID 9151906.
- ^ Vaughn MW, Proske RJ, Haviland DL (Sep 2002). "Identification, cloning, and functional characterization of a murine lipoxin A4 receptor homologue gene". Journal of Immunology. 169 (6). Baltimore, Md.: 3363–3369. doi:10.4049/jimmunol.169.6.3363. PMID 12218158.
- ^ Duvall MG, Levy BD (Aug 2016). "DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation". European Journal of Pharmacology. 785: 144–155. doi:10.1016/j.ejphar.2015.11.001. PMC 4854800. PMID 26546247.
- ^ de Paulis A, Prevete N, Fiorentino I, Walls AF, Curto M, Petraroli A, et al. (Jun 2004). "Basophils infiltrate human gastric mucosa at sites of Helicobacter pylori infection, and exhibit chemotaxis in response to H. pylori-derived peptide Hp(2-20)". Journal of Immunology. 172 (12). Baltimore, Md.: 7734–7743. doi:10.4049/jimmunol.172.12.7734. PMID 15187157.
- ^ Svensson L, Redvall E, Björn C, Karlsson J, Bergin AM, Rabiet MJ, et al. (Jul 2007). "House dust mite allergen activates human eosinophils via formyl peptide receptor and formyl peptide receptor-like 1". European Journal of Immunology. 37 (7): 1966–1977. doi:10.1002/eji.200636936. PMID 17559171.
- ^ Scanzano A, Schembri L, Rasini E, Luini A, Dallatorre J, Legnaro M, et al. (Feb 2015). "Adrenergic modulation of migration, CD11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes". Inflammation Research : Official Journal of the European Histamine Research Society ... [et Al.] 64 (2): 127–135. doi:10.1007/s00011-014-0791-8. PMID 25561369. S2CID 17721865.
- ^ a b Pundir P, Catalli A, Leggiadro C, Douglas SE, Kulka M (Jan 2014). "Pleurocidin, a novel antimicrobial peptide, induces human mast cell activation through the FPRL1 receptor". Mucosal Immunology. 7 (1): 177–187. doi:10.1038/mi.2013.37. PMID 23839065. S2CID 23300384.
- ^ Polakis PG, Uhing RJ, Snyderman R (Apr 1988). "The formylpeptide chemoattractant receptor copurifies with a GTP-binding protein containing a distinct 40-kDa pertussis toxin substrate". The Journal of Biological Chemistry. 263 (10): 4969–4976. doi:10.1016/S0021-9258(18)68882-9. PMID 2832415.
- ^ Boulay F, Tardif M, Brouchon L, Vignais P (May 1990). "Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA". Biochemical and Biophysical Research Communications. 168 (3): 1103–1109. doi:10.1016/0006-291x(90)91143-g. PMID 2161213.
- ^ Boulay F, Tardif M, Brouchon L, Vignais P (Dec 1990). "The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors". Biochemistry. 29 (50): 11123–11133. doi:10.1021/bi00502a016. PMID 2176894.
- ^ Murphy PM, Gallin EK, Tiffany HL, Malech HL (Feb 1990). "The formyl peptide chemoattractant receptor is encoded by a 2 kilobase messenger RNA. Expression in Xenopus oocytes". FEBS Letters. 261 (2): 353–357. Bibcode:1990FEBSL.261..353M. doi:10.1016/0014-5793(90)80590-f. PMID 1690150. S2CID 22817786.
- ^ Coats WD, Navarro J (Apr 1990). "Functional reconstitution of fMet-Leu-Phe receptor in Xenopus laevis oocytes". The Journal of Biological Chemistry. 265 (11): 5964–5966. doi:10.1016/S0021-9258(19)39276-2. PMID 2156834.
- ^ Perez HD, Holmes R, Kelly E, McClary J, Chou Q, Andrews WH (Nov 1992). "Cloning of the gene coding for a human receptor for formyl peptides. Characterization of a promoter region and evidence for polymorphic expression". Biochemistry. 31 (46): 11595–11599. doi:10.1021/bi00161a044. PMID 1445895.
- ^ Bao L, Gerard NP, Eddy RL, Shows TB, Gerard C (Jun 1992). "Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19". Genomics. 13 (2): 437–440. doi:10.1016/0888-7543(92)90265-t. PMID 1612600.
- ^ Murphy PM, Ozçelik T, Kenney RT, Tiffany HL, McDermott D, Francke U (Apr 1992). "A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family". The Journal of Biological Chemistry. 267 (11): 7637–7643. doi:10.1016/S0021-9258(18)42563-X. PMID 1373134.
- ^ Ye RD, Cavanagh SL, Quehenberger O, Prossnitz ER, Cochrane CG (Apr 1992). "Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor". Biochemical and Biophysical Research Communications. 184 (2): 582–589. doi:10.1016/0006-291x(92)90629-y. PMID 1374236.
- ^ Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, et al. (Mar 2010). "Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation". Journal of Immunology. 184 (5). Baltimore, Md.: 2611–2619. doi:10.4049/jimmunol.0903526. PMC 4256430. PMID 20107188.
- ^ Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Wang A, et al. (2012). "Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes". Scientific Reports. 2: 786. Bibcode:2012NatSR...2..786L. doi:10.1038/srep00786. PMC 3493074. PMID 23139859.
- ^ Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, et al. (Jan 2010). "Resolvin D1 binds human phagocytes with evidence for proresolving receptors". Proceedings of the National Academy of Sciences of the United States of America. 107 (4): 1660–1665. Bibcode:2010PNAS..107.1660K. doi:10.1073/pnas.0907342107. PMC 2824371. PMID 20080636.
- ^ Bento AF, Claudino RF, Dutra RC, Marcon R, Calixto JB (Aug 2011). "Omega-3 fatty acid-derived mediators 17(R)-hydroxy docosahexaenoic acid, aspirin-triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice". Journal of Immunology. 187 (4). Baltimore, Md.: 1957–1969. doi:10.4049/jimmunol.1101305. PMID 21724996.
- ^ Fiore S, Romano M, Reardon EM, Serhan CN (Jun 1993). "Induction of functional lipoxin A4 receptors in HL-60 cells". Blood. 81 (12): 3395–3403. doi:10.1182/blood.V81.12.3395.3395. PMID 8389617.
- ^ Fiore S, Maddox JF, Perez HD, Serhan CN (Jul 1994). "Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor". The Journal of Experimental Medicine. 180 (1): 253–260. doi:10.1084/jem.180.1.253. PMC 2191537. PMID 8006586.
- ^ Gronert K, Martinsson-Niskanen T, Ravasi S, Chiang N, Serhan CN (Jan 2001). "Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses". The American Journal of Pathology. 158 (1): 3–9. doi:10.1016/S0002-9440(10)63937-5. PMC 1850279. PMID 11141472.
- ^ Boulay F, Tardif M, Brouchon L, Vignais P (Dec 1990). "The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors". Biochemistry. 29 (50): 11123–11133. doi:10.1021/bi00502a016. PMID 2176894.
- ^ Murphy PM, Ozçelik T, Kenney RT, Tiffany HL, McDermott D, Francke U (Apr 1992). "A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family". The Journal of Biological Chemistry. 267 (11): 7637–7643. doi:10.1016/S0021-9258(18)42563-X. PMID 1373134.
- ^ Perez HD, Holmes R, Kelly E, McClary J, Andrews WH (Sep 1992). "Cloning of a cDNA encoding a receptor related to the formyl peptide receptor of human neutrophils". Gene. 118 (2): 303–304. doi:10.1016/0378-1119(92)90208-7. PMID 1511907.
- ^ Serhan CN, Chiang N, Dalli J (Apr 2015). "The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution". Seminars in Immunology. 27 (3): 200–215. doi:10.1016/j.smim.2015.03.004. PMC 4515371. PMID 25857211.
- ^ Romano M (Jun 2010). "Lipoxin and aspirin-triggered lipoxins". TheScientificWorldJournal. 10: 1048–1064. doi:10.1100/tsw.2010.113. PMC 5763664. PMID 20526535.
- ^ Buckley CD, Gilroy DW, Serhan CN (Mar 2014). "Proresolving lipid mediators and mechanisms in the resolution of acute inflammation". Immunity. 40 (3): 315–327. doi:10.1016/j.immuni.2014.02.009. PMC 4004957. PMID 24656045.
- ^ Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG (May 2015). "The Role of Formylated Peptides and Formyl Peptide Receptor 1 in Governing Neutrophil Function during Acute Inflammation". The American Journal of Pathology. 185 (5): 1172–1184. doi:10.1016/j.ajpath.2015.01.020. PMC 4419282. PMID 25791526.
- ^ Lin H (2025-03-13). "Metabolic signaling of ceramides through the FPR2 receptor inhibits adipocyte thermogenesis". Science. 388 (6746). Bibcode:2025Sci...388o4188L. doi:10.1126/science.ado4188. PMID 40080544.
- ^ Napolitano F, Montuori N (2025). "The N-formyl peptide receptors: much more than chemoattractant receptors. Relevance in health and disease". Frontiers in Immunology. 16: 1568629. doi:10.3389/fimmu.2025.1568629. PMC 11913705. PMID 40103822.
- ^ Maciuszek M, Cacace A, Brennan E, Godson C, Chapman TM (March 2021). "Recent advances in the design and development of formyl peptide receptor 2 (FPR2/ALX) agonists as pro-resolving agents with diverse therapeutic potential". European Journal of Medicinal Chemistry. 213: 113167. doi:10.1016/j.ejmech.2021.113167. PMID 33486199.
Further reading
[edit]- Murphy PM, Ozçelik T, Kenney RT, Tiffany HL, McDermott D, Francke U (Apr 1992). "A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family". The Journal of Biological Chemistry. 267 (11): 7637–7643. doi:10.1016/S0021-9258(18)42563-X. PMID 1373134.
- Ye RD, Cavanagh SL, Quehenberger O, Prossnitz ER, Cochrane CG (Apr 1992). "Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor". Biochemical and Biophysical Research Communications. 184 (2): 582–589. doi:10.1016/0006-291X(92)90629-Y. PMID 1374236.
- Perez HD, Holmes R, Kelly E, McClary J, Andrews WH (Sep 1992). "Cloning of a cDNA encoding a receptor related to the formyl peptide receptor of human neutrophils". Gene. 118 (2): 303–304. doi:10.1016/0378-1119(92)90208-7. PMID 1511907.
- Bao L, Gerard NP, Eddy RL, Shows TB, Gerard C (Jun 1992). "Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19". Genomics. 13 (2): 437–440. doi:10.1016/0888-7543(92)90265-T. PMID 1612600.
- Nomura H, Nielsen BW, Matsushima K (Oct 1993). "Molecular cloning of cDNAs encoding a LD78 receptor and putative leukocyte chemotactic peptide receptors". International Immunology. 5 (10): 1239–1249. doi:10.1093/intimm/5.10.1239. PMID 7505609.
- Durstin M, Gao JL, Tiffany HL, McDermott D, Murphy PM (May 1994). "Differential expression of members of the N-formylpeptide receptor gene cluster in human phagocytes". Biochemical and Biophysical Research Communications. 201 (1): 174–179. doi:10.1006/bbrc.1994.1685. PMID 8198572.
- Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN (May 1997). "Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors". The Journal of Experimental Medicine. 185 (9): 1693–1704. doi:10.1084/jem.185.9.1693. PMC 2196289. PMID 9151906.
- Gronert K, Gewirtz A, Madara JL, Serhan CN (Apr 1998). "Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon gamma and inhibits tumor necrosis factor alpha-induced IL-8 release". The Journal of Experimental Medicine. 187 (8): 1285–1294. doi:10.1084/jem.187.8.1285. PMC 2212233. PMID 9547339.
- Deng X, Ueda H, Su SB, Gong W, Dunlop NM, Gao JL, et al. (Aug 1999). "A synthetic peptide derived from human immunodeficiency virus type 1 gp120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R". Blood. 94 (4): 1165–1173. doi:10.1182/blood.V94.4.1165. PMID 10438703.
- Chiang N, Fierro IM, Gronert K, Serhan CN (Apr 2000). "Activation of lipoxin A(4) receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation". The Journal of Experimental Medicine. 191 (7): 1197–1208. doi:10.1084/jem.191.7.1197. PMC 2193166. PMID 10748237.
- Shen W, Proost P, Li B, Gong W, Le Y, Sargeant R, et al. (May 2000). "Activation of the chemotactic peptide receptor FPRL1 in monocytes phosphorylates the chemokine receptor CCR5 and attenuates cell responses to selected chemokines". Biochemical and Biophysical Research Communications. 272 (1): 276–283. doi:10.1006/bbrc.2000.2770. PMID 10872839.
- Le Y, Jiang S, Hu J, Gong W, Su S, Dunlop NM, et al. (Sep 2000). "N36, a synthetic N-terminal heptad repeat domain of the HIV-1 envelope protein gp41, is an activator of human phagocytes". Clinical Immunology. 96 (3). Orlando, Fla.: 236–242. doi:10.1006/clim.2000.4896. PMID 10964542.
- Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, et al. (Oct 2000). "LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells". The Journal of Experimental Medicine. 192 (7): 1069–1074. doi:10.1084/jem.192.7.1069. PMC 2193321. PMID 11015447.
- Kang Y, Taddeo B, Varai G, Varga J, Fiore S (Nov 2000). "Mutations of serine 236-237 and tyrosine 302 residues in the human lipoxin A4 receptor intracellular domains result in sustained signaling". Biochemistry. 39 (44): 13551–13557. doi:10.1021/bi001196i. PMID 11063592.
- Svensson L, Dahlgren C, Wennerås C (Oct 2002). "The chemoattractant Trp-Lys-Tyr-Met-Val-D-Met activates eosinophils through the formyl peptide receptor and one of its homologues, formyl peptide receptor-like 1". Journal of Leukocyte Biology. 72 (4): 810–818. doi:10.1189/jlb.72.4.810. PMID 12377951. S2CID 45789067.
- He R, Sang H, Ye RD (Feb 2003). "Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R". Blood. 101 (4): 1572–1581. doi:10.1182/blood-2002-05-1431. PMID 12393391.
- Christophe T, Karlsson A, Rabiet MJ, Boulay F, Dahlgren C (Nov 2002). "Phagocyte activation by Trp-Lys-Tyr-Met-Val-Met, acting through FPRL1/LXA4R, is not affected by lipoxin A4". Scandinavian Journal of Immunology. 56 (5): 470–476. doi:10.1046/j.1365-3083.2002.01149.x. PMID 12410796.
- Kucharzik T, Gewirtz AT, Merlin D, Madara JL, Williams IR (Apr 2003). "Lateral membrane LXA4 receptors mediate LXA4's anti-inflammatory actions on intestinal epithelium". American Journal of Physiology. Cell Physiology. 284 (4): C888 – C896. doi:10.1152/ajpcell.00507.2001. PMID 12456400.
- Qin CX, Norling LV, Vecchio EA, Brennan EP, May LT, Wootten D, et al. (October 2022). "Formylpeptide receptor 2: Nomenclature, structure, signalling and translational perspectives: IUPHAR review 35". British Journal of Pharmacology. 179 (19): 4617–4639. doi:10.1111/bph.15919. PMC 9545948. PMID 35797341.
External links
[edit]- "Formylpeptide Receptors: FPRL1". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.