File:Window function (rectangular).png
Page contents not supported in other languages.
Appearance

Size of this preview: 800 × 359 pixels. Other resolutions: 320 × 144 pixels | 640 × 287 pixels | 1,024 × 460 pixels | 1,280 × 575 pixels | 2,500 × 1,123 pixels.
Original file (2,500 × 1,123 pixels, file size: 83 KB, MIME type: image/png)
![]() | This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Transferred from en.wikipedia to Commons by Tiaguito.
Summary
DescriptionWindow function (rectangular).png | rectangular window and frequency response | |||
Date | ||||
Source | Own work | |||
Author | Bob K (original version), Olli Niemitalo | |||
Permission (Reusing this file) |
|
|||
Other versions |
|
|||
Source code InfoField | The script below generates these .png images:
This script has not been tested in MATLAB. See the individual file histories for the simpler MATLAB scripts that were the basis of this script. Generation of svg files by minor modification of the script displayed visual artifacts and renderer incompatibilities that could not be easily fixed. The current script fixes the visual artifacts in the png file as a post-processing step. The script generates a semi-transparent grid by taking a weighted average of two images, one with the grid and one without.N Matlabfunction plotWindowLayer (w, N, gridded, wname, wspecifier)
M=32;
k=0:N-1;
dr = 120;
H = abs(fft([w zeros(1,(M-1)*N)]));
H = fftshift(H);
H = H/max(H);
H = 20*log10(H);
H = max(-dr,H);
figure('Position',[1 1 1200 520])
subplot(1,2,1)
set(gca,'FontSize',28)
area(k,w,'FaceColor', [0 1 1],'edgecolor', [1 1 0],'linewidth', 2)
xlim([0 N-1])
if (min(w) >= -0.01)
ylim([0 1.05])
set(gca,'YTick', [0 : 0.1 : 1])
ylabel('amplitude','position',[-16 0.525 0])
else
ylim([-1 5])
set(gca,'YTick', [-1 : 1 : 5])
ylabel('amplitude','position',[-16 2 0])
endif
set(gca,'XTick', [0 : 1/8 : 1]*(N-1))
set(gca,'XTickLabel',[' 0'; ' '; ' '; ' '; ' '; ' '; ' '; ' '; 'N-1'])
grid(gridded)
set(gca,'LineWidth',2)
set(gca,'gridlinestyle','-')
xlabel('samples')
if (strcmp (wspecifier, ""))
title(cstrcat(wname,' window'))
else
title(cstrcat(wname,' window (', wspecifier, ')'))
endif
set(gca,'Position',[0.08 0.11 0.4 0.8])
set(gca,'XColor',[1 0 1])
set(gca,'YColor',[1 0 1])
subplot(1,2,2)
set(gca,'FontSize',28)
h = stem(([1:M*N]-1-M*N/2)/M,H,'-');
set(h,'BaseValue',-dr)
ylim([-dr 6])
set(gca,'YTick', [0 : -10 : -dr])
set(findobj('Type','line'),'Marker','none','Color',[0 1 1])
xlim([-M*N/2 M*N/2]/M)
grid(gridded)
set(findobj('Type','gridline'),'Color',[.871 .49 0])
set(gca,'LineWidth',2)
set(gca,'gridlinestyle','-')
ylabel('decibels')
xlabel('bins')
title('Frequency response')
set(gca,'Position',[0.59 0.11 0.4 0.8])
set(gca,'XColor',[1 0 1])
set(gca,'YColor',[1 0 1])
endfunction
function plotWindow (w, wname, wspecifier = "", wfilespecifier = "")
if (strcmp (wfilespecifier, ""))
wfilespecifier = wspecifier;
endif
N = size(w)(2);
B = N*sum(w.^2)/sum(w)^2 % noise bandwidth (bins), set N = 4096 to get an accurate estimate
plotWindowLayer(w, N, "on", wname, wspecifier); % "gridded" = "on"
print temp1.png -dpng "-S2500,1165"
close
plotWindowLayer(w, N, "off", wname, wspecifier); % "gridded" = "off"
print temp2.png -dpng "-S2500,1165"
close
% I'm not sure what's going on here, but it looks like the author might have been able
% to save himself some time by using set(gca,"Layer","top") and set(gca,"Layer","bottom").
I = imread ("temp1.png");
J = imread ("temp2.png");
info = imfinfo ("temp1.png");
w = info.Width;
c = 1-(double(I(:,1:w/2,1))+2*double(J(:,1:w/2,1)))/(255*3);
m = 1-(double(I(:,1:w/2,2))+2*double(J(:,1:w/2,2)))/(255*3);
y = 1-(double(I(:,1:w/2,3))+2*double(J(:,1:w/2,3)))/(255*3);
c = ((c != m) | (c != y)).*(c > 0).*(1-m-y);
I(:,1:w/2,1) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
I(:,1:w/2,2) = 255*(1-c-m-y + 0*m + 0*y + 0.4*c);
I(:,1:w/2,3) = 255*(1-c-m-y + 0*m + 0*y + 0.6*c);
c = 1-(double(I(:,w/2+1:w,1))+2*double(J(:,w/2+1:w,1)))/(255*3);
m = 1-(double(I(:,w/2+1:w,2))+2*double(J(:,w/2+1:w,2)))/(255*3);
y = 1-(double(I(:,w/2+1:w,3))+2*double(J(:,w/2+1:w,3)))/(255*3);
c = ((c != m) | (c != y)).*c;
I(:,w/2+1:w,1) = 255*(1-c-m-y + 0*m + 0*y + 0.8710*c);
I(:,w/2+1:w,2) = 255*(1-c-m-y + 0*m + 0*y + 0.49*c);
I(:,w/2+1:w,3) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
if (strcmp (wfilespecifier, ""))
imwrite (I, cstrcat('Window function and frequency response - ', wname, '.png'));
else
imwrite (I, cstrcat('Window function and frequency response - ', wname, ' (', wfilespecifier, ').png'));
endif
endfunction
N=128;
k=0:N-1;
w = 0.42 - 0.5*cos(2*pi*k/(N-1)) + 0.08*cos(4*pi*k/(N-1));
plotWindow(w, "Blackman")
w = 0.355768 - 0.487396*cos(2*pi*k/(N-1)) + 0.144232*cos(4*pi*k/(N-1)) -0.012604*cos(6*pi*k/(N-1));
plotWindow(w, "Nuttall", "continuous first derivative")
w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")
w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.028*cos(8*pi*k/(N-1));
plotWindow(w, "SRS flat top")
w = ones(1,N);
plotWindow(w, "Rectangular")
w = (N/2 - abs([0:N-1]-(N-1)/2))/(N/2);
plotWindow(w, "Triangular")
w = 0.5 - 0.5*cos(2*pi*k/(N-1));
plotWindow(w, "Hann")
w = 0.53836 - 0.46164*cos(2*pi*k/(N-1));
plotWindow(w, "Hamming", "alpha = 0.53836")
alpha = 0.5;
w = ones(1,N);
n = -(N-1)/2 : -alpha*N/2;
L = length(n);
w(1:L) = 0.5*(1+cos(pi*(abs(n)-alpha*N/2)/((1-alpha)*N/2)));
w(N : -1 : N-L+1) = w(1:L);
plotWindow(w, "Tukey", "alpha = 0.5")
w = sin(pi*k/(N-1));
plotWindow(w, "Cosine")
w = sinc(2*k/(N-1)-1);
plotWindow(w, "Lanczos")
w = ((N-1)/2 - abs([0:N-1]-(N-1)/2))/((N-1)/2);
plotWindow(w, "Bartlett")
sigma = 0.4;
w = exp(-0.5*( (k-(N-1)/2)/(sigma*(N-1)/2) ).^2);
plotWindow(w, "Gaussian", "sigma = 0.4")
w = 0.62 -0.48*abs(k/(N-1) -0.5) +0.38*cos(2*pi*(k/(N-1) -0.5));
plotWindow(w, "Bartlett–Hann")
alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 2")
alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 3")
tau = N-1;
epsilon = 0.1;
t_cut = tau * (0.5 - epsilon);
T_in = abs(k - 0.5 * tau);
z_exp = ((t_cut - 0.5 * tau) ./ (T_in - t_cut) + (t_cut - 0.5 * tau) ./ (T_in - 0.5 * tau));
sigma = (T_in < 0.5 * tau) ./ (exp(z_exp) + 1);
w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut);
plotWindow(w, "Planck-taper", "epsilon = 0.1")
w = 0.35875 - 0.48829*cos(2*pi*k/(N-1)) + 0.14128*cos(4*pi*k/(N-1)) -0.01168*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Harris")
w = 0.3635819 - 0.4891775*cos(2*pi*k/(N-1)) + 0.1365995*cos(4*pi*k/(N-1)) -0.0106411*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Nuttall")
w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")
tau = (N/2);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = N/2", "half window decay")
tau = (N/2)/(60/8.69);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = (N/2)/(60/8.69)", "60dB decay")
alpha = 2;
w = 1/2*(1 - cos(2*pi*k/(N-1))).*exp(alpha*abs(N-2*k-1)/(1-N));
plotWindow(w, "Hann-Poisson", "alpha = 2")
| |||
Source code InfoField | Octave
|
Captions
Add a one-line explanation of what this file represents
Items portrayed in this file
depicts
17 December 2005
image/png
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 16:48, 9 February 2013 | ![]() | 2,500 × 1,123 (83 KB) | Olli Niemitalo | Antialiasing, layout changes, larger font |
21:07, 17 December 2005 | ![]() | 1,038 × 419 (7 KB) | Tiaguito~commonswiki | file size. color source: http://en.wikipedia.org/wiki/Window_Function | |
20:48, 17 December 2005 | ![]() | 1,038 × 419 (8 KB) | Tiaguito~commonswiki | source: http://en.wikipedia.org/wiki/Window_Function author: http://en.wikipedia.org/wiki/User:Bob_K |
File usage
No pages on the English Wikipedia use this file (pages on other projects are not listed).
Global file usage
The following other wikis use this file:
- Usage on da.wikipedia.org
- Usage on et.wikipedia.org
Retrieved from "https://en.wikipedia.org/wiki/File:Window_function_(rectangular).png"