Jump to content

Gadolinium disilicide

From Wikipedia, the free encyclopedia
Gadolinium disilicide
Names
Other names
Gadolinium silicide, gadolinium(II) silicide
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 235-216-6
  • InChI=1S/Gd.2Si/q+3;;
    Key: MDYZLTUIAFSQMZ-UHFFFAOYSA-N
  • [Si].[Si].[Gd+3]
Properties
GdSi2
Molar mass 213.42 g·mol−1
Appearance Сrystals
Density 5.9 g/cm3
Melting point 1,540 °C (2,800 °F; 1,810 K)
insoluble
Structure
Hexagonal, orthorhombic
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Gadolinium disilicide is a binary inorganic compound of gadolinium and silicon with the chemical formula GdSi2.[1][2][3]

Synthesis

[edit]

GdSi2 can be produced by heating gadolinium and silicon in the presence of mercury. The mercury is removed by distillation after the reaction.[4] The compound can also be produced by the reaction of magnesium silicide and gadolinium chloride.[5][6]

Physical properties

[edit]

The compound features a metallic luster and exceptional thermal stability with a high melting point, ideal for high-temperature environments. Its semiconducting behavior varies with temperature and doping, while its hexagonal crystal structure (space group P6/mmm)[7] underpins distinctive electronic and magnetic properties.[8]

Gadolinium disilicide also exists in orthorhombic form, space group Imam.[9][10]

Chemical properties

[edit]

The compound is easily oxidized when heated; this fact limits its applications.[5]

Uses

[edit]

Key applications include: thermoelectric materials leveraging electrical conductivity and thermal insulation, advanced electronics (e.g., spintronics) due to gadolinium’s intrinsic magnetism, magnetic materials research, where its phenomena are studied for novel device integration.[8]

The compound remains a focal point in materials science and condensed matter physics for its multifunctional characteristics.[8]

References

[edit]
  1. ^ "Gadolinium silicide | CAS 12134-75-7 | SCBT - Santa Cruz Biotechnology". scbt.com. Retrieved 1 July 2025.
  2. ^ Lukashenko, G. M.; Polotskaya, R. I. (1 June 1986). "Thermodynamic properties of gadolinium disilicide". Soviet Powder Metallurgy and Metal Ceramics. 25 (6): 504–505. doi:10.1007/BF00792390. ISSN 1573-9066. Retrieved 1 July 2025.
  3. ^ Usui, Hiroyuki; Nomura, Masahito; Nishino, Hiroki; Kusatsu, Masatoshi; Murota, Tadatoshi; Sakaguchi, Hiroki (1 September 2014). "Gadolinium silicide/silicon composite with excellent high-rate performance as lithium-ion battery anode". Materials Letters. 130: 61–64. Bibcode:2014MatL..130...61U. doi:10.1016/j.matlet.2014.05.065. ISSN 0167-577X. Retrieved 1 July 2025.
  4. ^ Mayer, Isaac; Yanir, E.; Shidlovsky, Igal (1 April 1967). "Dimorphism of rare earth disilicides". Inorganic Chemistry. 6 (4): 842–844. doi:10.1021/ic50050a043. ISSN 0020-1669. Retrieved 1 July 2025.
  5. ^ a b Suu, H. V.; Mezey, G.; Petö, G.; Pászti, F.; Kótai, E.; Manuaba, A.; Fried, M.; Gyulai, J. (1 April 1986). "Oxidation behaviour of GdSi2 studied by RBS". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 15 (1): 247–249. doi:10.1016/0168-583X(86)90295-8. ISSN 0168-583X. Retrieved 1 July 2025.
  6. ^ Fitzmaurice, Jonathan C.; Hector, Andrew L.; Parkin, Ivan P.; Rowley, Adrian T. (1 April 1995). "Synthesis of Metal Silicide Powders by Thermolysis of Metal Chlorides with Magnesium Silicide". Phosphorus, Sulfur, and Silicon and the Related Elements. 101 (1–4): 47–55. doi:10.1080/10426509508042498. ISSN 1042-6507. Retrieved 1 July 2025.
  7. ^ Donnay, Joseph Désiré Hubert (1978). Crystal Data: Inorganic compounds 1967-1969. National Bureau of Standards. p. 117. Retrieved 1 July 2025.
  8. ^ a b c "CAS 12134-75-7: Gadolinium silicide (GdSi2) | CymitQuimica". cymitquimica.com. Retrieved 1 July 2025.
  9. ^ Donnay, Joseph Désiré Hubert (1973). Crystal Data: Inorganic compounds. National Bureau of Standards. p. 10. Retrieved 1 July 2025.
  10. ^ Haynes, William M. (6 June 2011). CRC Handbook of Chemistry and Physics. CRC Press. pp. 4–64. ISBN 978-1-4398-5512-6. Retrieved 1 July 2025.