Jump to content

Tubercidin

From Wikipedia, the free encyclopedia
Tubercidin
Skeleton formula of tubercidin
Names
IUPAC name
(2R,3R,4S,5R)-2-(4-aminopyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)oxolane-3,4-diol
Other names
  • 7-Deazaadenosine
  • Antibiotic 155B2T
  • Antibiotic XK 101-1
  • Sparsamycin A
  • Sparsomycin A
  • Tubercidine
Identifiers
3D model (JSmol)
38498
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.640 Edit this at Wikidata
EC Number
  • 200-703-4
MeSH Tubercidin
RTECS number
  • UY8870000
UNII
  • InChI=1S/C11H14N4O4/c12-9-5-1-2-15(10(5)14-4-13-9)11-8(18)7(17)6(3-16)19-11/h1-2,4,6-8,11,16-18H,3H2,(H2,12,13,14)/t6-,7-,8-,11-/m1/s1
    Key: HDZZVAMISRMYHH-KCGFPETGSA-N
  • C1=CN(C2=NC=NC(=C21)N)[C@H]3[C@@H]([C@@H]([C@H](O3)CO)O)O
Properties
C11H14N4O4
Molar mass 266.257 g·mol−1
Density 1.9 g/cm3
Boiling point 648.8 °C (1,199.8 °F; 921.9 K)
3000 mg/L[1]
log P –0.8[2]
Vapor pressure 4.27×10-13 mmHg
2.69×10-22 atm-m3/mole
Atmospheric OH rate constant
2.38×10-10 cm3/molecule-sec
Acidity (pKa) 5.3[3]
Pharmacology
Legal status
  • NZ: No individual approval but may be used under an appropriate group standard
  • US: Not approved
Hazards
GHS labelling:
GHS06: Toxic
Danger
H300
P264, P270, P301+P316, P321, P330, P405, P501
Flash point 346.2 °C
Lethal dose or concentration (LD, LC):
16.g/kg (rat, oral)
1 mg/kr (rat, intraper.)[4]
28.32 mg/kg (mouse, oral)[5]
6 mg/kg (mouse, intraper.)[6]
45 mg/kg (mouse, iv)[7]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tubercidin is a naturally occurring nucleoside antibiotic and antimetabolite, chemically classified as an N-glycosylpyrrolopyrimidine. Structurally, it is a purine analog of adenosine due to which it readily substitutes for adenosine in biological systems. This incorporation into DNA and RNA can disrupt nucleic acid metabolism, leading to cytotoxic effects.

Tubercidin is produced by several microorganisms, including Streptomyces tubericidicus, Plectonema radiosum, and Actinopolyspora erythraea. It exhibits multiple biological activities, functioning as an antineoplastic agent, antibiotic antifungal agent, and bacterial metabolite. Because of its interference with nucleic acid synthesis, tubercidin shows promise for use in treating cancer and certain infections.[8][9][10]

Structure

[edit]

Tubercidin is systematically named (2R,3R,4S,5R)-2-(4-aminopyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)oxolane-3,4-diol. It is an N-glycosylpyrrolopyrimidine ribonucleoside and a member of the 7-deazapurine class, characterized by the replacement of the nitrogen atom at position 7 of the purine ring with a carbon atom. This structural change allows tubercidin to mimic adenosine in biological systems. The 7-deaza modification makes it resistant to degradation by enzymes such as adenosine deaminase and adenosine phosphorylase, enabling it to persist longer inside cells. This stability enhances its ability to disrupt nucleic acid metabolism and other adenosine-dependent processes. This results in its potent biological activity and systemic toxicity. Other natural compounds like toyocamycin share this structural similarity, making 7-deazapurines an important class of bioactive nucleosides.[11][12]

Adenosine Tubercidin Toyocamycin

Occurence

[edit]

Tubercidin is naturally produced by several species of actinomycetes, particularly within the genus Streptomyces. It was first discovered in Streptomyces tubercidicus, but later identified in multiple other strains. The following species have been reported to produce tubercidin:

Biological activities

[edit]

Due to its structural similarity to adenosine, tubercidin can interfere with various essential biological processes resultin in broad range of biological activities.

Anticancer activity

[edit]

Tubercidin shows potent cytotoxic activity against various cancer cell lines, including P388 and A549 tumor cells, as well as human cancer cell lines such as HeLa, A375, and WM266.[14][22] It has shown promising anti-Small-Cell Lung Cancer (SCLC) activity both in vitro and in vivo. It selectively exhibits strong cytotoxicity against SCLC cell lines (DMS 53 and DMS 114) at low concentrations (CC50 of 0.19 µM and 0.14 µM, respectively), with minimal impact on normal bronchial cells. In SCLC xenograft mouse models, tubercidin treatment (5 mg/kg, three times a week) significantly inhibited tumor growth, with some instances of complete tumor regression.[23]The anticancer activity of tubercidin mainly arises due to the induction of apoptosis in these cells.[24] 5-Iodotubercidin, a derivative of tubercidin, has been identified as a genotoxic agent and a potent activator of the tumor suppressor protein p53, triggering DNA damage, cell cycle arrest, and necroptosis in cancer models.[25][26] Current research aims in developing less toxic derivatives of tubercidin by C6, C7, or C8 modifications on the purine ring. Additionally, new platinum(II) complexes of tubercidin are being investigated for their enhanced selectivity toward tumor cells.[22]

Antiviral activity

[edit]

Tubercidin displays broad-spectrum antiviral activity against a range of viruses. It has shown efficacy against SARS-CoV-2, influenza B virus (IBV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and SADS-CoV.[27] It exhibits antiviral activity by interfering with multiple stages of the viral life cycle, including viral entry, replication, and release. It also suppresses the expression of viral non-structural protein 2 (nsp2) and activates innate immune responses through pathways such as RIG-I and NF-κB.[28] Tubercidin also acts as a bispecific inhibitor targeting both the viral NSP16 methyltransferase and the host enzyme MTr1, both of which are essential for efficient SARS-CoV-2 replication.[29] Its derivatives have demonstrated significant immunomodulatory effects, helping to reduce the hyperinflammatory response associated with SARS-CoV infection.[30] One derivative, 5-Hydroxymethyltubercidin (HMTU), has shown strong antiviral activity against several flaviviruses—such as dengue, Zika, and yellow fever as well as various coronaviruses. Its mechanism involves inhibiting the viral RNA-dependent RNA polymerase (RdRp), leading to premature termination of viral RNA synthesis.[31]

Antiparasitic activity

[edit]

Tubercidin displays potent antiparasitic activity against a range of protozoan parasites, including Trypanosoma brucei,[32][33] Trypanosoma gambiense,[34] Trypanosoma congolense,[33] Schistosoma mansoni, Schistosoma japonicum,[35] and various species of Leishmania.[36][37] A derivative, 3′-deoxytubercidin, has demonstrated strong antitrypanosomal activity. In mouse models, it successfully cured infections caused by Trypanosoma brucei evansi (Surra) and T. equiperdum (Dourine) when administered intraperitoneally, with no detectable toxicity at effective doses.[38][39]

Antibacterial and antifungal activity

[edit]

Tubercidin also exhibits antibiotic properties, showing activity against Mycobacterium tuberculosis and Streptococcus faecalis.[40] It, alongwith its derivative 5-iodotubercidin alsoshow notable antifungal effects, especially against Candida albicans, with its toxicity linked to uptake through the fungal concentrative nucleoside transporter (CNT).[41]

Mechanism of action

[edit]

Tubercidin's biological effects mainly arise from its structural similarity to adenosine which enables it to interfere with fundamental cellular processes. After cellular uptake via nucleoside transporters, tubercidin can be converted by adenosine kinase into its mono-, di-, and triphosphate forms. These active metabolites mimic natural adenosine nucleotides and compete with them, disrupting the fnuction of key enzymes like polymerases. As a result, tubercidin interferes with DNA replication, RNA transcription, and protein synthesis.[42][43][44]

In addition to its broad effects on nucleic acid synthesis, tubercidin also targets specific enzymes and cellular pathways. One of its known targets is S-adenosylhomocysteine hydrolase (SAHH), an enzyme essential for maintaining proper methylation reactions by breaking down S-adenosylhomocysteine (SAH), a natural inhibitor of transmethylation. By inhibiting SAHH, tubercidin disrupts various methylation-dependent processes like cell signaling. It inhibits chemotaxis as well as chemotaxis-dependent cell streaming in organisms such as Dictyostelium and chemotaxis in neutrophils.[45]

In parasitic organisms such as in Trypanosoma brucei, tubercidin has been found to inhibit glycolysis by targeting the enzyme phosphoglycerate kinase. Since trypanosomes rely heavily on glycolysis for energy production, this makes glycolytic enzymes attractive targets for antitrypanosomal drugs.[32]

Tubercidin has also been shown to disrupt the function of nuclear speckles (NSs), which are essential subnuclear structures enriched with RNA-binding proteins involved in mRNA splicing and processing. Upon treatment with tubercidin, poly(A)+ RNAs become dispersed and degraded across the nucleoplasm, while SC35-marked nuclear speckles remain condensed. This suggests that tubercidin selectively impairs mRNA processing without completely dismantling the speckles themselves. Under stress conditions such as hypoxia or serum starvation, this disruption can worsen cellular damage and promote apoptosis, particularly in sensitve cells like cardiomyocytes.[46]

Toxicity

[edit]

Despite potent biological activites, the clinical applications of tubercidin are significantly limited due to its toxicity to mammalian cells. This manifests itself mainly as hepatotoxicity, nephrotoxicity, and cardiotoxicity.[47]

Cardiotoxicity is a notable concern with tubercidin, particularly in individuals with existing heart conditions like ischemic cardiomyopathy. Tubercidin promotes apoptosis in heart muscle cells under stress, especially in hypoxic or starved conditions. This effect appears to be linked to tubercidin's interference with nuclear speckles which are important for processing mRNA and regulating gene activity. By disrupting these functions, tubercidin may worsen damage in already weakened heart tissue.[24][47]

Hepatotoxicity and nephrotoxicity have been observed in vivo in mice and in vitro with human bone marrow progenitor cells. In mice, intravenous doses of 45 mg/kg caused high mortality rates, mainly due to liver damage. Kidney injury was also noted at higher doses. Co-administering nucleoside transport inhibitors like nitrobenzylthioinosine 5'-monophosphate (NBMPR-P) helped reduce liver toxicity by changing how tubercidin is distributed in the body. However, at high doses, NBMPR-P increased the risk of kidney damage.[47][48]

Clinical use and derivatives

[edit]

Early Phase I clinical trials involving direct intravenous administration of tubercidin in humans found the drug to be unsuitable due to significant toxicity. Reported side effects included hepatic toxicity, renal toxicity like proteinuria and uremia, and hematological toxicity like venous thrombosis and leukopenia. These toxic effects have been a major barrier to the clinical use of tubercidin.[47][49][50][51]

The bioactivity of tubercidin alongwith its toxicity has spurred extemsive exploration into its derivatives particularly with modifications at C6, C7 and C8. Some of the key ones are:

References

[edit]
  1. ^ Merck Index (1996).
  2. ^ Hansch,C et al (1995).
  3. ^ S. Suzuki and S. Marumo. J. Antibiot. (Tokyo) 14A, 34 (1961).
  4. ^ E, Mihich; CL, Simpson; AI, Mulhern (1969). "Comparative study of the toxicologic effects of 7-deazaadenosine (tubercidin) and 7-deazainosine". Cancer Research. 29 (1). Cancer Res: 116–123. ISSN 0008-5472. PMID 5763972. Retrieved 2025-06-09.
  5. ^ National Cancer Institute Screening Program Data Summary, Developmental Therapeutics Program., JAN1986.
  6. ^ Compounds Available for Fundamental Research, Volume II-6, Antibiotics, A Program of Upjohn Company Research Laboratory., 2(6)(-), 1971.
  7. ^ Anzai, Kentarō; Nakamura, Gōtō; Suzuki, Saburō (1957). "A New Antibiotic, Tubercidin". The Journal of Antibiotics, Series A. 10 (5). Japan Antibiotics Research Association: 201–204. doi:10.11554/antibioticsa.10.5_201. ISSN 0368-1173. Retrieved 2025-06-09.
  8. ^ "tubercidin (CHEBI:48267)". www.ebi.ac.uk. Retrieved 2025-06-09.
  9. ^ "Tubercidin". go.drugbank.com. Retrieved 2025-06-09.
  10. ^ "Tubercidin - MeSH - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2025-06-09.
  11. ^ Mulamoottil, Varughese A. (2016). "Tubercidin and Related Analogues: An Inspiration for 50 years in Drug Discovery". Current Organic Chemistry. 20 (8): 830–838. doi:10.2174/1385272819666150803231652.
  12. ^ "tubercidin | SGD". www.yeastgenome.org. Retrieved 2025-06-09.
  13. ^ Zhao, Li-Xing; Huang, Sheng-Xiong; Tang, Shu-Kun; Jiang, Cheng-Lin; Duan, Yanwen; Beutler, John A.; Henrich, Curtis J.; McMahon, James B.; Schmid, Tobias; Blees, Johanna S.; Colburn, Nancy H.; Rajski, Scott R.; Shen, Ben (2011-09-23). "Actinopolysporins A–C and Tubercidin as a Pdcd4 Stabilizer from the Halophilic Actinomycete Actinopolyspora erythraea YIM 90600". Journal of Natural Products. 74 (9): 1990–1995. Bibcode:2011JNAtP..74.1990Z. doi:10.1021/np200603g. ISSN 0163-3864. PMC 3179765. PMID 21870828.
  14. ^ a b Biabani, Misbah F.; Gunasekera, Sarath P.; Longley, Ross E.; Wright, Amy E.; Pomponi, Shirley A. (2002-01-01). "Tubercidin, A Cytotoxic Agent from the Marine Sponge Caulospongia biflabellata". Pharmaceutical Biology. 40 (4): 302–303. doi:10.1076/phbi.40.4.302.8469. ISSN 1388-0209.
  15. ^ a b c d e f Stewart, Jeffrey B.; Bornemann, Volker; Chen, JIAN Lu; Moore, Richard E.; Caplan, Faith R.; Karuso, Helen; Larsen, Linda K.; Patterson, Gregory M. L. (1988-08-25). "Cytotoxic, fungicidal nucleosides from blue green algae belonging to the Scytonemataceae". The Journal of Antibiotics. 41 (8): 1048–1056. doi:10.7164/antibiotics.41.1048. ISSN 0021-8820. PMID 3139604.
  16. ^ a b Barchi, Joseph J.; Norton, Ted R.; Furusawa, Eiichi; Patterson, Gregory M. L.; Moore, Richard E. (1983-01-01). "Identification of a cytotoxin from Tolypothrix byssoidea as tubercidin". Phytochemistry. 22 (12): 2851–2852. Bibcode:1983PChem..22.2851B. doi:10.1016/S0031-9422(00)97712-4. ISSN 0031-9422.
  17. ^ Mitchell, Scott S.; Pomerantz, Steven C.; Concepción, Gisela P.; Ireland, Chris M. (1996-01-01). "Tubercidin Analogs from the Ascidian Didemnum voeltzkowi". Journal of Natural Products. 59 (10): 1000–1001. Bibcode:1996JNAtP..59.1000M. doi:10.1021/np960457f. ISSN 0163-3864. PMID 8904849.
  18. ^ a b Mooberry, Susan L.; Stratman, Klemens; Moore, Richard E. (1995-09-25). "Tubercidin stabilizes microtubules against vinblastine-induced depolymerization, a taxol-like effect". Cancer Letters. 96 (2): 261–266. doi:10.1016/0304-3835(95)03940-X. ISSN 0304-3835. PMID 7585466.
  19. ^ Poehland, Benjamin L.; Chan, James A. (1988-01-01). "Direct broth assay for sparsomycin and related nucleoside antitumor antibiotics using reversed-phase high-performance liquid chromatography". Journal of Chromatography A. 439 (2): 459–465. doi:10.1016/S0021-9673(01)83861-9. ISSN 0021-9673. PMID 3403654.
  20. ^ Yoo, Jin-Cheol; Han, Ji-Man; Ko, Ok-Hyun; Bang, Hee-Jae (1998-12-01). "Purification and characterization of GTP cyclohydrolase I fromStreptomyces tubercidicus, a producer of tubercidin". Archives of Pharmacal Research. 21 (6): 692–697. doi:10.1007/BF02976759. ISSN 1976-3786. PMID 9868539.
  21. ^ Liu, Yan; Gong, Rong; Liu, Xiaoqin; Zhang, Peichao; Zhang, Qi; Cai, You-Sheng; Deng, Zixin; Winkler, Margit; Wu, Jianguo; Chen, Wenqing (2018-08-28). "Discovery and characterization of the tubercidin biosynthetic pathway from Streptomyces tubercidicus NBRC 13090". Microbial Cell Factories. 17 (1): 131. doi:10.1186/s12934-018-0978-8. ISSN 1475-2859. PMC 6112128. PMID 30153835.
  22. ^ a b D'Errico, Stefano; Falanga, Andrea Patrizia; Capasso, Domenica; Di Gaetano, Sonia; Marzano, Maria; Terracciano, Monica; Roviello, Giovanni Nicola; Piccialli, Gennaro; Oliviero, Giorgia; Borbone, Nicola (2020-07-04). "Probing the DNA Reactivity and the Anticancer Properties of a Novel Tubercidin-Pt(II) Complex". Pharmaceutics. 12 (7): 627. doi:10.3390/pharmaceutics12070627. ISSN 1999-4923. PMC 7407906. PMID 32635488.
  23. ^ Chen, Jungang; Barrett, Lindsey; Lin, Zhen; Kendrick, Samantha; Mu, Shengyu; Dai, Lu; Qin, Zhiqiang (2022-05-01). "Identification of natural compounds tubercidin and lycorine HCl against small-cell lung cancer and BCAT1 as a therapeutic target". Journal of Cellular and Molecular Medicine. 26 (9): 2557–2565. doi:10.1111/jcmm.17246. ISSN 1582-4934. PMC 9077304. PMID 35318805.
  24. ^ a b Shen, Guowen; Cheng, Qingni; Liang, Lunmin; Qin, Yaping; Cao, Yunzhu; Li, Quanzhong; Xiao, Shengjun (2025-03-22). "Tubercidin enhances apoptosis in serum-starved and hypoxic mouse cardiomyocytes by inducing nuclear speckle condensation". BMC Cardiovascular Disorders. 25 (1): 211. doi:10.1186/s12872-025-04661-4. ISSN 1471-2261. PMC 11929321. PMID 40121465.
  25. ^ a b Zheng, Biaolin; Chen, Xiubing; Chen, Fengping; Liao, Xiaomin; Wang, Feng; Yang, Zhe; Yi, Nan; Shi, Xiaoyan; Qin, Shanyu; Jiang, Haixing (2023). "5-Iodotubercidin Inhibits the Growth of Insulinoma Cells by Inducing Apoptosis". Neuroendocrinology. 113 (6): 641–656. doi:10.1159/000529616. ISSN 1423-0194. PMID 36758529.
  26. ^ a b Zhang, Xin; Jia, Deyong; Liu, Huijuan; Zhu, Na; Zhang, Wei; Feng, Jun; Yin, Jun; Hao, Bin; Cui, Daxiang; Deng, Yuezhen; Xie, Dong; He, Lin; Li, Baojie (2013). "Identification of 5-Iodotubercidin as a genotoxic drug with anti-cancer potential". PLOS ONE. 8 (5): e62527. Bibcode:2013PLoSO...862527Z. doi:10.1371/journal.pone.0062527. ISSN 1932-6203. PMC 3646850. PMID 23667485.
  27. ^ Wang, Tianliang; Zheng, Guanmin; Chen, Zilu; Wang, Yue; Zhao, Chenxu; Li, Yaqin; Yuan, Yixin; Duan, Hong; Zhu, Hongsen; Yang, Xia; Li, Wentao; Du, Wenjuan; Li, Yongtao; Li, Dongliang (2024-01-02). "Drug repurposing screens identify Tubercidin as a potent antiviral agent against porcine nidovirus infections". Virus Research. 339: 199275. doi:10.1016/j.virusres.2023.199275. ISSN 0168-1702. PMC 10730850. PMID 38008220.
  28. ^ Xu, Yuqian; Zhu, Zhenbang; Zhang, Meng; Chen, Lulu; Tian, Kegong; Li, Xiangdong (2024-03-05). "Tubercidin inhibits PRRSV replication via RIG-I/NF-κB pathways and interrupting viral nsp2 synthesis". Microbiology Spectrum. 12 (3): e0347923. doi:10.1128/spectrum.03479-23. ISSN 2165-0497. PMC 10913529. PMID 38299833.
  29. ^ Tsukamoto, Yuta; Hiono, Takahiro; Yamada, Shintaro; Matsuno, Keita; Faist, Aileen; Claff, Tobias; Hou, Jianyu; Namasivayam, Vigneshwaran; vom Hemdt, Anja; Sugimoto, Satoko; Ng, Jin Ying; Christensen, Maria H.; Tesfamariam, Yonas M.; Wolter, Steven; Juranek, Stefan (2023-02-10). "Inhibition of cellular RNA methyltransferase abrogates influenza virus capping and replication". Science. 379 (6632): 586–591. Bibcode:2023Sci...379..586T. doi:10.1126/science.add0875. PMID 36758070.
  30. ^ Bergant, Valter; Yamada, Shintaro; Grass, Vincent; Tsukamoto, Yuta; Lavacca, Teresa; Krey, Karsten; Mühlhofer, Maria-Teresa; Wittmann, Sabine; Ensser, Armin; Herrmann, Alexandra; Vom Hemdt, Anja; Tomita, Yuriko; Matsuyama, Shutoku; Hirokawa, Takatsugu; Huang, Yiqi (2022-09-01). "Attenuation of SARS-CoV-2 replication and associated inflammation by concomitant targeting of viral and host cap 2'-O-ribose methyltransferases". The EMBO Journal. 41 (17): e111608. doi:10.15252/embj.2022111608. ISSN 1460-2075. PMC 9350232. PMID 35833542.
  31. ^ a b Uemura, Kentaro; Nobori, Haruaki; Sato, Akihiko; Sanaki, Takao; Toba, Shinsuke; Sasaki, Michihito; Murai, Akiho; Saito-Tarashima, Noriko; Minakawa, Noriaki; Orba, Yasuko; Kariwa, Hiroaki; Hall, William W.; Sawa, Hirofumi; Matsuda, Akira; Maenaka, Katsumi (2021-10-22). "5-Hydroxymethyltubercidin exhibits potent antiviral activity against flaviviruses and coronaviruses, including SARS-CoV-2". iScience. 24 (10): 103120. Bibcode:2021iSci...24j3120U. doi:10.1016/j.isci.2021.103120. ISSN 2589-0042. PMC 8433052. PMID 34541466.
  32. ^ a b Drew, Mark E.; Morris, James C.; Wang, Zefeng; Wells, Lance; Sanchez, Marco; Landfear, Scott M.; Englund, Paul T. (2003-11-21). "The Adenosine Analog Tubercidin Inhibits Glycolysis in Trypanosoma brucei as Revealed by an RNA Interference Library *". Journal of Biological Chemistry. 278 (47): 46596–46600. doi:10.1074/jbc.M309320200. ISSN 0021-9258. PMID 12972414.
  33. ^ a b Hulpia, Fabian; Campagnaro, Gustavo Daniel; Scortichini, Mirko; Van Hecke, Kristof; Maes, Louis; de Koning, Harry P.; Caljon, Guy; Van Calenbergh, Serge (2019-02-15). "Revisiting tubercidin against kinetoplastid parasites: Aromatic substitutions at position 7 improve activity and reduce toxicity". European Journal of Medicinal Chemistry. 164: 689–705. doi:10.1016/j.ejmech.2018.12.050. ISSN 0223-5234. PMID 30677668.
  34. ^ Ogbunude, P. O.; Ikediobi, C. O. (1982-09-01). "Effect of nitrobenzylthioinosinate on the toxicity of tubercidin and ethidium against Trypanosoma gambiense". Acta Tropica. 39 (3): 219–224. ISSN 0001-706X. PMID 6128890.
  35. ^ el Kouni, Mahmoud H (2003-09-01). "Potential chemotherapeutic targets in the purine metabolism of parasites". Pharmacology & Therapeutics. 99 (3): 283–309. doi:10.1016/S0163-7258(03)00071-8. ISSN 0163-7258. PMID 12951162.
  36. ^ Aoki, J. I.; Yamashiro-Kanashiro, E. H.; Ramos, D. C. C.; Cotrim, P. C. (2009-01-01). "Efficacy of the tubercidin antileishmania action associated with an inhibitor of the nucleoside transport". Parasitology Research. 104 (2): 223–228. doi:10.1007/s00436-008-1177-z. ISSN 1432-1955. PMID 18787843.
  37. ^ Aoki, Juliana Ide; Coelho, Adriano Cappellazzo; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Sanchez, Eduardo Milton Ramos; Nerland, Audun Helge; Floeter-Winter, Lucile Maria; Cotrim, Paulo Cesar (2016-09-08). "Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major". PLOS Neglected Tropical Diseases. 10 (9): e0004972. doi:10.1371/journal.pntd.0004972. ISSN 1935-2735. PMC 5015992. PMID 27606425.
  38. ^ a b Ilbeigi, Kayhan; Mabille, Dorien; Roy, Rajdeep; Bundschuh, Mirco; Van de Velde, Ewout; Hulpia, Fabian; Van Calenbergh, Serge; Caljon, Guy (2025-04-01). "3'-deoxytubercidin: A potent therapeutic candidate for the treatment of Surra and Dourine". International Journal for Parasitology. Drugs and Drug Resistance. 27: 100580. doi:10.1016/j.ijpddr.2025.100580. ISSN 2211-3207. PMC 11787584. PMID 39827514.
  39. ^ Mabille, Dorien; Ilbeigi, Kayhan; Hendrickx, Sarah; Ungogo, Marzuq A.; Hulpia, Fabian; Lin, Cai; Maes, Louis; de Koning, Harry P.; Van Calenbergh, Serge; Caljon, Guy (2022-08-01). "Nucleoside analogues for the treatment of animal trypanosomiasis". International Journal for Parasitology. Drugs and Drug Resistance. 19: 21–30. doi:10.1016/j.ijpddr.2022.05.001. ISSN 2211-3207. PMC 9111543. PMID 35567803.
  40. ^ Anzai, K.; Nakamura, G.; Suzuki, S. (1957-09-01). "A new antibiotic, tubercidin". The Journal of Antibiotics. 10 (5): 201–204. ISSN 0021-8820. PMID 13513512.
  41. ^ Ojima, Yoshihiro; Yokota, Naoki; Tanibata, Yuki; Nerome, Shinsuke; Azuma, Masayuki (2022-08-31). "Concentrative Nucleoside Transporter, CNT, Results in Selective Toxicity of Toyocamycin against Candida albicans". Microbiology Spectrum. 10 (4): e0113822. doi:10.1128/spectrum.01138-22. ISSN 2165-0497. PMC 9431476. PMID 35913167.
  42. ^ Paterson, A R P; Harley, E R; Cass, C E (1984-12-15). "Inward fluxes of adenosine in erythrocytes and cultured cells measured by a quenched-flow method". Biochemical Journal. 224 (3): 1001–1008. doi:10.1042/bj2241001. ISSN 0264-6021. PMC 1144539. PMID 6525168.
  43. ^ Bloch, A.; Mihich, E.; Leonard, R. J.; Nichol, C. A. (1969-01-01). "Studies on the biologic activity and mode of action of 7-deazainosine". Cancer Research. 29 (1): 110–115. ISSN 0008-5472. PMID 4974300.
  44. ^ Lindberg, B.; Klenow, H.; Hansen, K. (1967-02-10). "Some properties of partially purified mammalian adenosine kinase". The Journal of Biological Chemistry. 242 (3): 350–356. doi:10.1016/S0021-9258(18)96277-0. ISSN 0021-9258. PMID 4290214.
  45. ^ Shu, Shi; Mahadeo, Dana C.; Liu, Xiong; Liu, Wenli; Parent, Carole A.; Korn, Edward D. (2006-12-26). "S-adenosylhomocysteine hydrolase is localized at the front of chemotaxing cells, suggesting a role for transmethylation during migration". Proceedings of the National Academy of Sciences. 103 (52): 19788–19793. Bibcode:2006PNAS..10319788S. doi:10.1073/pnas.0609385103. PMC 1750865. PMID 17172447.
  46. ^ Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko; Igarashi, Masayuki; Tani, Tokio (2014-03-28). "Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing". Biochemical and Biophysical Research Communications. 446 (1): 119–124. doi:10.1016/j.bbrc.2014.02.060. ISSN 0006-291X. PMID 24569078.
  47. ^ a b c d Kolassa, Norbert; Jakobs, Ewa S.; Buzzell‡, Gerald R.; Paterson§, Alan R. P. (1982-05-15). "Manipulation of toxicity and tissue distribution of tubercidin in mice by nitrobenzylthioinosine 5'-monophosphate". Biochemical Pharmacology. 31 (10): 1863–1874. doi:10.1016/0006-2952(82)90489-0. ISSN 0006-2952. PMID 7104018.
  48. ^ el Kouni, M. H.; Diop, D.; O'Shea, P.; Carlisle, R.; Sommadossi, J. P. (1989-06-01). "Prevention of tubercidin host toxicity by nitrobenzylthioinosine 5'-monophosphate for the treatment of schistosomiasis". Antimicrobial Agents and Chemotherapy. 33 (6): 824–827. doi:10.1128/AAC.33.6.824. ISSN 0066-4804. PMC 284239. PMID 2764531.
  49. ^ Grage, T. B.; Rochlin, D. B.; Weiss, A. J.; Wilson, W. L. (1970-01-01). "Clinical studies with tubercidin administered after absorption into human erythrocytes" (PDF). Cancer Research. 30 (1): 79–81. ISSN 0008-5472. PMID 4985935.
  50. ^ Grage, T. B.; Rochlin, D. B.; Weiss, A. J.; Wilson, W. L. (1970-01-01). "Clinical studies with tubercidin administered after absorption into human erythrocytes". Cancer Research. 30 (1): 79–81. ISSN 0008-5472. PMID 4985935.
  51. ^ Hochberg-Laufer, Hodaya; Schwed-Gross, Avital; Neugebauer, Karla M.; Shav-Tal, Yaron (2019-05-21). "Uncoupling of nucleo-cytoplasmic RNA export and localization during stress". Nucleic Acids Research. 47 (9): 4778–4797. doi:10.1093/nar/gkz168. ISSN 1362-4962. PMC 6511838. PMID 30864659.
  52. ^ Stewart, Jeffrey B.; Bornemann, Volker; Chen, JIAN Lu; Moore, Richard E.; Caplan, Faith R.; Karuso, Helen; Larsen, Linda K.; Patterson, Gregory M. L. (1988-08-25). "Cytotoxic, fungicidal nucleosides from blue green algae belonging to the Scytonemataceae". The Journal of Antibiotics. 41 (8): 1048–1056. doi:10.7164/antibiotics.41.1048. ISSN 0021-8820. PMID 3139604.
  53. ^ Ouyang, Wenliang; Huang, Haiyang; Yang, Ruchun; Ding, Haixin; Xiao, Qiang (2020-07-29). "First Total Synthesis of 5'-O-α-d-Glucopyranosyl Tubercidin". Marine Drugs. 18 (8): 398. doi:10.3390/md18080398. ISSN 1660-3397. PMC 7459636. PMID 32751067.
  54. ^ Zhao, Jianyuan; Liu, Qian; Yi, Dongrong; Li, Quanjie; Guo, SaiSai; Ma, Ling; Zhang, Yongxin; Dong, Dongxin; Guo, Fei; Liu, Zhenlong; Wei, Tao; Li, Xiaoyu; Cen, Shan (2022-02-01). "5-Iodotubercidin inhibits SARS-CoV-2 RNA synthesis". Antiviral Research. 198: 105254. doi:10.1016/j.antiviral.2022.105254. ISSN 1872-9096. PMC 8800165. PMID 35101534.