User:Doeze/sandbox
Technology during WW2 table
[edit]Technology | US | UK | Germany | Japan |
---|---|---|---|---|
Jet aircraft | ||||
Cruise missiles | ||||
Ballistic missiles | ||||
Radar | ||||
Nuclear weapons | ||||
Chemical weapons | ||||
Biological weapons |
Manhattan Project map
[edit]- Purple: Tokamak-type experiments
- Blue: Stellarators
- Orange: Inertial confinement experiments
Chemical warfare multiple image
[edit]- Sarin bomblets for use on the Honest John rocket
- White phosphorus explosion during training at Edgewood Arsenal
- Iranian soldier wearing gas mask during the Iran-Iraq War
- Postwar disposal of mustard gas produced by Japan on Ōkunoshima during World War II
- French gas attack in Flanders, World War I
- Tear gas used in Incheon during the June Democratic Struggle
Tokamak multiple image
[edit]- T-1, the first tokamak device, USSR
- Joint European Torus, a landmark tokamak, UK
- Fusion plasma in a modern tokamak, EAST, China
- MAST, a spherical tokamak, UK
- Magnetic field lines in Wendelstein 7-X, the largest stellarator, Germany
- Interior of the Large Helical Device stellarator, Japan
- ITER, the largest MCF experiment, scheduled to operate from 2034 in France
Triad comparison
[edit]Land | Sea | Air | Total | ||||
---|---|---|---|---|---|---|---|
ICBMs | No. | SLBMs | No. | Bombers | No. | No. | |
![]() |
LGM-30 G Minuteman III | 400 | UGM-133 Trident II D5/LE | 280 | B-52H Stratofortress | 65 | 745 |
B-21 Raider | |||||||
![]() |
RS20V (Voevoda) | 326 | R-29RMU Sineva | 192 | Tu-95MS/MSM | 67 | 588 |
? (Avangard) | |||||||
RS-12M (Topol-M) | |||||||
RS-24 (Yars) | RSM-56 Bulava | Tu-160/M | |||||
RS-28 (Sarmat) | |||||||
![]() |
DF-5 | 134 | JL-3 | 72 | Xi'an H-6 | 20 | 226 |
DF-27 | |||||||
DF-31 | |||||||
DF-41 | |||||||
![]() |
|||||||
![]() |
|||||||
![]() |
|||||||
![]() |
|||||||
![]() |
|||||||
![]() |
Proliferation history
[edit]Country | Explore | Pursue | Acquire |
---|---|---|---|
![]() |
1939– | 1942– | 1945– |
![]() |
1942– | 1943– | 1949– |
![]() |
1940– | 1941– | 1952– |
![]() |
1945– | 1954– | 1960– |
![]() |
1952– | 1955– | 1964– |
![]() |
1949– | 1955– | 1967– |
![]() |
1969–91 | 1974–91 | 1979–91 |
![]() |
1972– | 1972– | 1987– |
![]() |
1948– | 1964–66, 1972–75, 1980– | 1987– |
![]() |
1962– | 1980– | 2006– |
![]() |
1949–62, 1974–87 | 1953–62, 1982–87 | |
![]() |
1969–81 | 1970–81 | |
![]() |
1970–2003 | 1970–2003 | |
![]() |
1966–90 | 1975–90 | |
![]() |
1975–91 | 1975–90 | |
![]() |
1974–79, 1984– | 1989– | |
![]() |
2000– | 2002–07 | |
![]() |
1939–45 | ||
![]() |
1941–45, 1967–72 | ||
![]() |
1945–69 | ||
![]() |
1945–70 | ||
![]() |
1947–62 | ||
![]() |
1955–80 | ||
![]() |
1955–58 | ||
![]() |
1956–73 | ||
![]() |
1957–58 | ||
![]() |
1964–67 | ||
![]() |
1967–76, 1987–88 | ||
![]() |
1978–89 |
History (crit mass)
[edit]In uranium
[edit]From the 1938 discovery of nuclear fission, investigation of various critical mass and radius scenarios began, which would be applied to both reactors and bombs. By far the most significant was the optimistic value in the Frisch–Peierls memorandum: a bare sphere of uranium-235 at 600 grams and 2.1 cm would produce a nuclear explosion in the kiloton range.
In May 1939, Francis Perrin in France published the first paper on the topic, specifically on a fast neutron reaction in natural uranium. He estimated the mean number of neutrons produced per fission in uranium-238 at 3, while the modern value is 1.18. This gave a critical mass with a tamper of 12 tons and a radius of around 50 cm. The correct result is that natural uranium sustain a fast reaction in any configuration.
On 9 June 1939, Siegfried Flügge published a paper with similar parameters to Perrin, against yielding a 50 cm critical radius. Notably he included discussion of the transmutation of uranium-238 into the undiscovered neptunium-239.
On 14 June 1939, Rudolf Peierls[4]
Fast reactor image
[edit]- Superphenix, the largest fast reactor ever
- Cross-section of Clementine, the first fast reactor
- EBR-I, the first fast breeder reactor
- RORSAT Soviet space probe, extensively using the BES-5 reactor
- BN-800, the largest operating fast reactor
- The Chernobyl sarcophagus, built to contain the effects of the 1986 disaster
Manhattan Project facilities
[edit]Uranium processing in the Manhattan Project
[edit]Uranium compound production until 1947 (tons)[5] | |||||||
---|---|---|---|---|---|---|---|
Contractor | Total | ||||||
Vitro | 768 | 768 | |||||
Eldorado | 2,679 | 2,679 | |||||
Linde | 2,428 | 300 | 2,060 | 4,788 | |||
Mallinckrodt | 4,697 | 2,926 | 1,364 | 8,987 | |||
DuPont | 982 | 1,970 | 716 | 232 | 3,900 | ||
Harshaw | 1,640 | 1,615 | 3,255 | ||||
Electro-Met | 1,538 | 1,538 | |||||
Iowa State | 972 | 972 | |||||
Met Hydrides | 41 | 41 | |||||
Westinghouse | 69 | 69 | |||||
Total | 768 | 6,089 | 6,967 | 7,342 | 1,615 | 4,216 | 26,997 |
Early piles
[edit]Name | Associated scientists | Location | Country | Dates | Moderator | Uranium form | Neutron source | k factor |
---|---|---|---|---|---|---|---|---|
Hans von Halban, Lew Kowarski, Frédéric Joliot-Curie, Francis Perrin | Ivry-sur-Seine | ![]() |
March 1939-January 1940 | Light water, paraffin | Aqueous uranyl nitrate, uranium oxide | Radium-beryllium | ||
Hans von Halban, Lew Kowarski, Frédéric Joliot-Curie, Francis Perrin | Grenoble | ![]() |
Late 1939 | Graphite | None | |||
Hans von Halban, Lew Kowarski | Cambridge | ![]() |
November -December 1940 | Heavy water | Uranium oxide | Radium-beryllium | ||
George Paget Thomson | London | ![]() |
Summer 1939 | Light water, paraffin | Uranium oxide | |||
George C. Laurence, Bernice Weldon Sargent | Ottawa | ![]() |
1940-1942 | Graphite | Uranium oxide | Radium-beryllium | ||
Columbia #1 | Enrico Fermi, Herbert L. Anderson, H. B. Hanstein | Columbia University | ![]() |
Spring 1939 | Light water | Uranium oxide | Radon-beryllium | |
Columbia #2 | Enrico Fermi | Columbia University | ![]() |
Summer 1939 | Aqueous magnesium sulfate | Triuranium octoxide | Radium-beryllium | |
A-21 | Enrico Fermi | Columbia University | ![]() |
September 25, 1940 | Graphite | None | Radon-beryllium | |
A-6 | Enrico Fermi | Columbia University | ![]() |
January 17, 1941 | Graphite | Triuranium octoxide | Radon-beryllium | |
A-12 | Princeton University | ![]() |
June 1, 1941 | Graphite | Uranium oxide | Proton-beryllium | ||
A-1 | Enrico Fermi | Columbia University | ![]() |
July 3, 1941 | Graphite | Triuranium octoxide | Radon-beryllium | |
CP-89 | Enrico Fermi | Columbia University | ![]() |
November 1941 | Graphite | None | Gamma ray-beryllium | |
C-74 | Enrico Fermi | Columbia University | ![]() |
January 1942 | Graphite | None | Gamma ray-beryllium | |
Exponential 1 | Enrico Fermi | Columbia University | ![]() |
March 1942 | Graphite | Uranium oxide | 0.87 | |
Exponential 2 | Enrico Fermi | Columbia University | ![]() |
March 1942 | Graphite | Uranium oxide | 0.918 | |
Exponential 3 | Enrico Fermi | Metallurgical Laboratory | ![]() |
June 20, 1942 | Paraffin, beryllium | Triuranium octoxide | 1.004 | |
Paul Harteck | Hamburg | ![]() |
May-June 1940 | Dry-ice | Uranium oxide | |||
Gottfried von Droste | Berlin | ![]() |
Fall 1940 | None | Sodium uranate | |||
L-I | Robert Döpel | Leipzig University | ![]() |
Late 1940-early 1941 | Light water, heavy water | Uranium oxide | ||
L-II | Robert Döpel | Leipzig University | ![]() |
Late 1940-early 1941 | Light water, heavy water | Uranium oxide | ||
Walther Bothe, Arnold Flammersfeld | Heidelberg | ![]() |
Late 1940 | Heavy water? | Uranium oxide | |||
Walther Bothe | Heidelberg | ![]() |
January 1941 | Graphite | Uranium oxide | |||
B-I | Karl Wirtz | Berlin-Dahlem | ![]() |
Late 1940 | Paraffin, light water | Triuranium octoxide | ||
B-II | Karl Wirtz | Berlin-Dahlem | ![]() |
Late 1940 | Paraffin, light water | Triuranium octoxide | ||
L-III | Robert Döpel | Leipzig University | ![]() |
Summer 1941 | Light water, heavy water | Uranium oxide | ||
L-IV | Robert Döpel | Leipzig University | ![]() |
May 1942 | Light water, heavy water | Uranium oxide | ||
G-I | Kurt Diebner | Gottow | ![]() |
Summer 1942 | Paraffin | Uranium oxide | ||
B-III | Karl Wirtz | Berlin-Dahlem | ![]() |
1942 | Paraffin | Uranium power | ||
B-IV | Karl Wirtz | Berlin-Dahlem | ![]() |
1942 | Paraffin | Uranium power | ||
B-V | Karl Wirtz | Berlin-Dahlem | ![]() |
1942 | Paraffin | Uranium powder | ||
G-II | Kurt Diebner | Gottow | ![]() |
April 1943 | Heavy water | Uranium cubes | ||
G-III | Kurt Diebner | Gottow | ![]() |
April 1943 | Heavy water | Uranium cubes | ||
B-VI | Karl Wirtz | Berlin-Dahlem | ![]() |
Spring 1944 | Heavy water | Uranium plates | ||
B-VII | Karl Wirtz | Berlin-Dahlem | ![]() |
Late 1944 | Heavy water, graphite | Uranium plates | ||
B-VIII | Karl Wirtz | Berlin-Dahlem | ![]() |
February 1945 | Heavy water | Uranium cubes | 0.85 |
Notable early piles
[edit]Name | Associated scientists | Location | Country | Date assembled | Notes | Moderator | Uranium form |
---|---|---|---|---|---|---|---|
Hans von Halban, Lew Kowarski, | Ivry-sur-Seine,
Paris |
![]() |
March 1939 | First ever piles
First ever net neutron generation |
Light water, paraffin | Aqueous uranyl nitrate,
uranium oxide[note 1] | |
Columbia #1 | Enrico Fermi, Herbert L. Anderson,
H. B. Hanstein |
Columbia University,
New York |
![]() |
March 1939 | First pile in the US
First net neutron generation in US |
Light water | Uranium oxide |
George Paget Thomson | London | ![]() |
Summer 1939 | First pile in the UK | Light water, paraffin | Uranium oxide | |
Hans von Halban, Lew Kowarski | University of Cambridge,
Cambridgeshire |
![]() |
November 1940 | First pile to use heavy water
First net neutron generation in UK |
Heavy water, liquid hydrocarbon | Uranium oxide | |
George C. Laurence, | NRC Laboratories,
Ottawa |
![]() |
1940 | First pile to use graphite | Graphite | Uranium oxide | |
Paul Harteck | Hamburg | ![]() |
May 1940 | First pile in Germany | Dry-ice | Uranium oxide | |
Exponential 3 | Enrico Fermi | Metallurgical Laboratory,
Chicago |
![]() |
June 1942 | First pile in Chicago | Paraffin, beryllium | Triuranium octoxide |
Exponential 9 | Enrico Fermi | Metallurgical Laboratory,
Chicago |
![]() |
July 1942 | First pile with theoretical k > 1[note 2] | Paraffin, beryllium | Triuranium octoxide |
L-IV | Robert Döpel | Leipzig University | ![]() |
May 1942 | First net neutron generation in Germany
First explosion in a nuclear experiment |
Light water, heavy water | Uranium oxide |
B-VIII | Karl Wirtz | Haigerloch,
Baden-Württemberg |
![]() |
February 1945 | Last pile in Germany | Heavy water | Uranium cubes |
Highly-enriched uranium production (USSR)
[edit]Site | Plant name | Began operation | Stopped HEU production | Separative work units per year | Method |
---|---|---|---|---|---|
Ural Electrochemical Combine | D-1 | November 1949 | 10,000[6] | Gaseous diffusion | |
D-3 | 1951 | 35,000[7] | Gaseous diffusion | ||
D-4 | December 1952 | Gaseous diffusion | |||
SU-3 | 1955 | Electromagnetic separation | |||
D-5 | 1955 | 650,000 | Gaseous diffusion | ||
Elektrokhimpribor Combine[8] | SU-20 | Electromagnetic separation | |||
Siberian Chemical Combine | |||||
Electrochemical Plant (Zelenogorsk) | |||||
Angarsk Electrolysis Chemical Plant |
Early reactors
[edit]Name | Alternate names | Country | Location | Moderator | Criticality date |
---|---|---|---|---|---|
Chicago Pile-1 | CP-1 | ![]() |
University of Chicago, Illinois | Graphite | 2 December 1942[9] |
Chicago Pile-2 | CP-2 | ![]() |
Site A, Illinois | Graphite | 20 March 1943[10] |
Oak Ridge Graphite Reactor | X-10, Clinton Pile | ![]() |
Clinton Laboratories, Tennessee | Graphite | 4 November 1943[11] |
305 Test Pile[12] | ![]() |
Hanford Site, Washington | Graphite | March 1944[13][when?] | |
Chicago Pile-3 | CP-3 | ![]() |
Site A, Illinois | Heavy water | 15 May 1944[14] |
Los Alamos LOPO Reactor[15] | LOPO | ![]() |
Los Alamos Laboratory, New Mexico | Light water | 9 May 1944[16] |
B Reactor | ![]() |
Hanford Site, Washington | Graphite | 26 September 1944[17] | |
Los Alamos Water Boiler | HYPO | ![]() |
Los Alamos Laboratory, New Mexico | Light water | December 1944[18][when?] |
D Reactor | ![]() |
Hanford Site, Washington | Graphite | December 1944[19] | |
Dragon | ![]() |
Los Alamos Laboratory, New Mexico | None (fast) | 20 January 1945[20] | |
F Reactor | ![]() |
Hanford Site, Washington | Graphite | February 1945[19] | |
Trinity, first US nuclear test | 16 July 1945 | ||||
Zero Energy Experimental Pile | ZEEP | ![]() |
Chalk River Laboratories, Ontario | Heavy water | 5 September 1945[21] |
Los Alamos Fast Reactor | Clementine | ![]() |
Los Alamos Laboratory, New Mexico | None (fast) | 19 November 1946[22] |
F-1 | ![]() |
Laboratory No. 2, Moscow | Graphite | 25 December 1946 | |
National Research Experimental | NRX | ![]() |
Chalk River Laboratories, Ontario | Heavy water | 22 July 1947[23] |
Graphite Low Energy Experimental Pile | GLEEP | ![]() |
Atomic Energy Research Establishment, Oxfordshire | Graphite | 15 August 1947[24] |
Reactor A | ![]() |
Mayak Production Association, Chelyabinsk Oblast | Graphite | 10 June 1948[25] | |
British Experimental Pile Operation | BEPO | ![]() |
Atomic Energy Research Establishment, Oxfordshire | Graphite | 3 July 1948[26] |
Eau Lourde-1 (Heavy Water-1) | EL-1, Zoé | ![]() |
Fort de Châtillon, Paris | Heavy water | 15 December 1948[27] |
Physical Boiler on Fast Neutrons | FKBN | ![]() |
Design Bureau No. 11, Sarov | None (fast) | 1 February 1949[28] |
TVR | TVR | ![]() |
Laboratory No. 3, Moscow | Heavy water | April 1949[29] |
RDS-1, first Soviet nuclear test | 29 August 1949 | ||||
H Reactor | ![]() |
Hanford Site, Washington | Graphite | October 1949[19] | |
Reactor AV-1 | ![]() |
Mayak Production Association, Chelyabinsk Oblast | Graphite | 5 April 1950[25] | |
Brookhaven Graphite Research Reactor | BGRR | ![]() |
Brookhaven National Laboratory, New York | Graphite | 22 August 1950[30] |
DR Reactor | ![]() |
Hanford Site, Washington | Graphite | October 1950[19] | |
Low Intensity Test Reactor | LITR | ![]() |
Oak Ridge National Laboratory, Tennessee | Light water | 4 February 1950[31] |
Bulk Shielding Reactor | BSR | ![]() |
Oak Ridge National Laboratory, Tennessee | Light water | December 1950[32] |
Large reactors
[edit]Model | Thermal power (MWth) | First location | First criticality | Number built | Type | Moderator | Coolant | Purpose |
---|---|---|---|---|---|---|---|---|
RBMK-1500 | 4800 | Ignalina Nuclear Power Plant, Lithuania | 31 December 1983[33] | 2 | LWGR | Graphite | Light water | Commercial |
EPR-1750 | 4590 | Taishan Nuclear Power Plant, China | 6 June 2018[34] | 4 | PWR | Light water | Light water | Commercial |
BWR-6 | 4408 | Grand Gulf Nuclear Station, United States | 18 August 1982[35] | |||||
N4 REP 1450 | 4270 | Chooz Nuclear Power Plant | 25 July 1996[36] | 4 | PWR | Light water | Light water | Commercial |
K Reactor | 4400 | Hanford Site, United States | January 1955[37] | 2 | LWGR | Graphite | Light water | Plutonium production |
Phoebus-2A | 4082 | Jackass Flats, Nevada | 8 June 1968[38] | 1 | NTR | Graphite | Hydrogen | Space propulsion |
N Reactor | 4000 | Hanford Site, United States | December 1963[39] | 1 | LWGR | Graphite | Light water | Plutonium production |
Superphénix | 4000 | Superphénix, France | September 1985[40] | 1 | SFR | None (fast) | Sodium | Commercial |
APR-1400 | 3983 | Kori Nuclear Power Plant, South Korea | 29 December 2015[41] | 8 | PWR | Light water | Light water | Commercial |
Early cyclotrons
[edit]Country | Location | Diameter | Particle energy | First beam | Associated scientists | |
---|---|---|---|---|---|---|
in | cm | |||||
![]() |
University of California, Berkeley | 4.5 in | 13 keV | 2 January 1931[9] | Ernest Lawrence, M. Stanley Livingston | |
![]() |
University of California, Berkeley | |||||
![]() |
Leningrad Physico-Technical Institute | 28 cm | 530 keV | 1934[42] | Abram Alikhanov, Igor Kurchatov, Mikhail Alekseevich Eremeev | |
![]() |
V. G. Khlopin Radium Institute, Leningrad | 39 in | 100 cm | 3.2 MeV | March 1937 | |
![]() |
Riken laboratory, Tokyo | 26 in | 2.9 MeV | 3 April 1937 | Yoshio Nishina, Tameichi Yasaki, Sukeo Watanabe | |
![]() |
Institute for Theoretical Physics, University of Copenhagen | August 1938[43] | Niels Bohr, George de Hevesy, August Krogh | |||
![]() |
Collège de France, Paris | 7 MeV | March 1939[44] | Frédéric Joliot-Curie |
2008 Cheney vs Clinton
[edit]![]() | |||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
538 members of the Electoral College 270 electoral votes needed to win | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Opinion polls | |||||||||||||||||||||||||||||
Turnout | 61.6%[45]![]() | ||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
![]() Presidential election results map. Blue denotes states won by Clinton/Obama and red denotes those won by Cheney/Rice. Numbers indicate electoral votes cast by each state and the District of Columbia. | |||||||||||||||||||||||||||||
|
Nuclear reactor designs by coolant and moderator
[edit]
|
Nuclear reactor designs
[edit]Name | Fuel | Enrichment | Moderator | Coolant | Temperature | First built | Thermal output (MWth) | Electrical output (MWe) |
---|---|---|---|---|---|---|---|---|
![]() |
19.75% | |||||||
![]() |
8.5% | |||||||
![]() |
2% | |||||||
![]() |
2100 | |||||||
![]() |
5% | |||||||
Generation IV designs
[edit]Acronym | Full name | Design organization | Country | Type | Coolant | Moderator | Fuel | Enrichment (wt %) | Design status | Purpose | Thermal output (MWth) | Gross electrical output (MWe) | Net electrical output (MWe) | Net efficiency | Thermodynamic cycle | Neutron spectrum | Non-electrical applications |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4S | super-safe, small and simple | Toshiba Energy Systems & Solutions Corp. | ![]() |
SFR | U-10Zr | 17 | Detailed design | Commercial | 30 | 10 | 10 | 33.3 | Rankine | Fast | Multiple | ||
ABWR | Advanced Boiling Water Reactor | GE-Hitachi | ![]() |
BWR | UO2 | 4 | Operational | Commerical | 3926 | 1420 | 1350 | 34 | Rankine | Thermal | - | ||
ABWR-II | Advanced Boiling Water Reactor II | GE-Hitachi | ![]() |
BWR | UO2 | 5.2 | Under design | Commerical | 4960 | 1717 | 1638 | 33 | Rankine | Thermal | - | ||
ACR-1000 | Advanced CANDU Reactor 1000 | AECL | ![]() |
HWR | UO2 | 2.4 | Under design | Commerical | 3200 | 1165 | 1082 | 36.5 | Rankine | Thermal | H2 production | ||
AHWR | Advanced Heavy Water Reactor | BARC | ![]() |
HWR | MOX | 3.25 | Under design | Commerical | 920 | 304 | 284 | 30.9 | Rankine | Thermal | Desalination | ||
ALFRED | Advanced Lead Fast Reactor European Demonstrator | Ansaldo Nucleare | ![]() |
LFR | No Moderator | MOX | - | Under design | Demonstration | 300 | 125 | 125 | - | - | Fast | - | |
ALLEGRO | ALLEGRO | EURATOM | ![]() |
GFR | No Moderator | MOX | - | Under design | Demonstration | 75 | - | - | - | - | Fast | - | |
AP 1000 | Advanced Passive PWR | Westinghouse | ![]() |
PWR | UO2 | 4.8 | Under construction | Commerical | 3400 | 1200 | 1100 | 32 | Rankine | Thermal | - | ||
AP-600 | Advanced Passive Pressurized Water Reactor | Westinghouse | ![]() |
PWR | UO2 | 4.8 | On Hold | Commerical | 1940 | - | 600 | 31 | Rankine | Thermal | - | ||
APR+ | Advanced Power Reactor Plus | KHNP | ![]() |
PWR | UO2 | 4.26 | Licensed | Commerical | 4290 | 1560 | 1505 | 35.1 | Rankine | Thermal | - | ||
APR1000 | Advanced Power Reactor | KEPCO/KHNP | ![]() |
PWR | UO2 | 4 | Operational | Commerical | 2815 | 1050 | 1000 | 35.5 | Rankine | Thermal | - | ||
APR1400 | Advanced Power Reactor 1400 | KEPCO/KHNP | ![]() |
PWR | UO2 | 4.65 | Operational | Commerical | 3983 | 1465 | 1400 | 35.1 | Rankine | Thermal | - | ||
APWR | Advanced Pressurized Water Reactor | Mitsubishi | ![]() |
PWR | UO2 | - | Under design | Commerical | 4466 | 1538 | 1500 | 34.4 | Rankine | Thermal | - | ||
ASTRID | Advanced Sodium Technological Reactor for Industrial Demonstration | CEA | ![]() |
SFR | No Moderator | MOX | 20 | Under design | Demonstration | 1500 | 600 | 600 | - | Brayton/Rankine | Fast | - | |
ATMEA1 | ATMEA1 | ATMEA | ![]() |
PWR | UO2 and MOX | 5 | Under design | Commerical | 3150 | 1200 | 1150 | 36 | Rankine | Thermal | - | ||
BN-1200 | BN-1200 | JSC “Afrikantov OKBM” | ![]() |
SFR | No Moderator | Nitride or MOX | - | Under construction | Commerical | 2800 | 1220 | 1140 | 40.7 | Rankine | Fast | - | |
BREST-OD-300 | BREST-OD-300 | RDIPE | ![]() |
LFR | No Moderator | PuN–UN | 13.5 | Under design | Demonstration | 700 | 300 | 300 | - | Rankine | Fast | - | |
BWRX-300 | Boiling Water Reactor X-300 | GE-Hitachi and Hitachi GE Nuclear Energy | ![]() |
BWR | UO2 | 3.4 | Conceptual design | Commercial | 870 | 300 | 290 | 33 | Rankine | Thermal | Possible | ||
CFR-600 | China Fast Reactor 600 | China Institute of Atomic Energy | ![]() |
SFR | No Moderator | UO2 and MOX | - | Conceptual design | Demonstration | 1500 | 600 | 600 | 40 | - | Fast | - | |
CLEAR-I | China LEAd-based Research Reactor | Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences | ![]() |
LFR | No Moderator | UO2 | - | Conceptual design | Experimental | 10 | - | - | - | - | Fast | - | |
CSR1000 | Chinese Supercritical Water-Cooled Reactor | NPIC | ![]() |
SCWR | UO2 | 6.2 | Conceptual design | Demonstration | 2300 | 1000 | - | 43.5 | Rankine | Thermal | - | ||
EC6 | Enhanced CANDU 6 | AECL | ![]() |
HWR | UO2 | 0.7 | Under design | Commerical | 2084 | 740 | 690 | 35.5 | Rankine | Thermal | H2 production | ||
ELECTRA | European Lead Cooled Training Reactor | KTH | ![]() |
LFR | No Moderator | (Pu,Zr)N | - | Under design | Experimental | 0.5 | - | - | - | - | Fast | - | |
ELFR | European Lead Fast Reactor | Ansaldo Nucleare | ![]() |
LFR | No Moderator | MOX | - | Conceptual design | Demonstration | 1500 | 630 | 630 | 40 | Rankine | Fast | - | |
EM2 | Energy Multiplier Module | General Atomics | ![]() |
GFR | No Moderator | UC | 7.7 | Conceptual design | Commercial | 500 | 272 | 265 | 53 | Combined | Fast | - | |
EPR | The Evolutionary Power Reactor | AREVA | ![]() |
PWR | UO2 and MOX | 4.95 | Under construction | Commerical | 4590 | 1770 | 1650 | 36 | Rankine | Thermal | - | ||
ESBWR | Economic Simplified Boiling Water Reactor | GE-Hitachi | ![]() |
BWR | UO2 | - | Licensed | Commerical | 4500 | 1600 | 1520 | 34 | Rankine | Thermal | - | ||
FBNR | Fixed Bed Nuclear Reactor | FURGS | ![]() |
PWR | CERMET | 5 | Under design | Commerical | 218 | 72 | 70 | 33 | Rankine | Thermal | Desalination | ||
FBR-1 & 2 | Fast Breeder Reactors 1 & 2 | IGCAR | ![]() |
SFR | No Moderator | MOX | - | Under design | Commerical | 1250 | 500 | 500 | 41.7 | Rankine | Fast | - | |
G4M | Gen4 Module | Gen4 Energy Inc. | ![]() |
LFR | No Moderator | Uranium nitride | 19.75 | Under design | Commerical | 70 | 25 | 25 | - | Rankine | Fast | - | |
GTHTR300C | Gas Turbine High Temperature Reactor | JAEA | ![]() |
GCR | UO2 and MOX | 14.3 | Conceptual design | Demonstration | 600 | 274 | - | 47 | Brayton | Thermal | H2 production | ||
HAPPY200 | Advanced low-Pressurized and Passive SafetY system – 200 MWth | SPIC | ![]() |
PWR | UO2 | 2.76 | Detailed design | Commercial | 200 | - | - | - | - | Thermal | Civil heat supply | ||
HP-LWR | High Performance LWR | KIT and partners | ![]() |
SCWR | UO2 | 9 | Conceptual design | Demonstration | 2300 | 1046 | 1000 | 43.5 | Rankine | Thermal | - | ||
HTR-PM | High Temperature GCR - Pebble-Bed Module | Tsinghua University | ![]() |
GCR | UO2 | 8.5 | Under construction | Demonstration | 500 | 211 | 200 | - | Rankine | Thermal | - | ||
IMR | Integrated Modular Water Reactor | Mitsubishi | ![]() |
iPWR | UO2 | 4.8 | Under design | Commerical | 1000 | 350 | 350 | 35 | Rankine | Thermal | - | ||
IMSR-400 | Integral Molten Salt Reactor-400 | Terrestrial Energy | ![]() |
MSR | Fluoride Salts | UF4 | 5-19 | Under design | Commerical | 400 | 194 | 185 | 46 | Rankine | Thermal | Multiple | |
IPHWR-220 | Indian 220 MWe PHWR | NPCIL | ![]() |
HWR | UO2 | 0.7 | Operational | Commerical | 754 | 235.81 | 210 | 28 | Modified Rankine | Thermal | - | ||
IPHWR-700 | Indian 700 MWe PHWR | NPCIL | ![]() |
HWR | UO2 | 0.7 | Operational | Commerical | 2166 | 700 | 630 | 29 | Modified Rankine | Thermal | - | ||
JSCWR | Japanese Supercritical WCR | Toshiba and partners | ![]() |
SCWR | UO2 | 7.2 | Conceptual design | Demonstration | 3681 | 700 | 1620 | 44 | Rankine | Thermal | - | ||
JSFR | Japan Sodium-cooled Fast Reactor | JAEA | ![]() |
SFR | No Moderator | MOX | - | Under design | Commerical | 3530 | 750 | 750 | - | - | Fast | - | |
KAMADO FBR | KAMADO FBR | CREIPI | ![]() |
GFR | Carbon Dioxide | No Moderator | UO2 and MOX | 18 | Conceptual design | Demonstration | 3000 | 1000 | 1000 | 33.3 | Rankine | Fast | - |
KERENA | KERENA | AREVA | ![]() |
BWR | UO2 and MOX | 4.95 | Under design | Commerical | 3370 | 1290 | 1250 | 37 | Rankine | Thermal | - | ||
KLT-40S | KLT-40S | OKBM | ![]() |
PWR | UO2 | 13 | Under construction | Commerical | 300 | 70 | 60 | 23.3 | Rankine | Thermal | Distric heat | ||
LFR-AS-200 | Lead-cooled Fast Reactor Amphora-Shaped 200 | Hydromine Energy S.a.r.l | ![]() |
LFR | No moderator | MOX | 19 | Conceptual design | Commercial | 480 | 212 | 200 | 42 | Rankine | Fast | Heat for industrial processes | |
LFTR | Liquid Fluoride Thorium Reactor | Flibe Energy | ![]() |
MSR | Fluoride Salts | Molten salt with thorium and uranium | - | Conceptual design | Commerical | 600 | 250 | - | 45 | Brayton with IHX | Thermal | - | |
MBIR | Multipurpose fast-neutron research reactor | NIKIET | ![]() |
SFR | No Moderator | MOX | - | Under design | Experimental | 150 | 60 | 60 | - | - | Fast | - | |
Mk1 PB-FHR | Mark 1 Pebble-Bed Fluoride-Salt-Cooled High Temperature Reactor | University of California, Berkeley | ![]() |
MSR | Fluoride Salts | UCO | 19.8 | Under design | Commerical | 236 | 100 | - | 42.5 | Brayton | Thermal | - | |
MoveluX | Mobile-Very-small reactor for Local Utility in X-mark | Toshiba Energy Systems & Solutions | ![]() |
SMR (micro) | Calcium hydride (CaH2) | U3Si2 | 4.8 | Conceptual design | Commercial | 10 | 3.5 | 3.5 | 35 | Brayton | Thermal | Process heat supply, Hydrogen production | |
MSFR | Molten Salt Fast Reactors | CNRS | ![]() |
MSR | Molten Salt | No Moderator | LiF-(U,Pu)F3-ThF4 | - | Conceptual design | Demonstration | 3000 | 1500 | 1500 | - | - | Fast | - |
MSR-FUJI | Molten Salt Reactor-FUJI | International Thorium Molten-Salt Forum: ITMSF | ![]() |
MSR | Fluoride Salts | Molten salt with thorium and uranium | 2 | Conceptual design | Commerical | 450 | 207 | 200 | 44.4 | Rankine | Thermal | Multiple | |
MSTW | Molten Salt Thermal Wasteburner | Seaborg Technologies | ![]() |
MSR | Molten Salt | Eutectic Sodium-actinide fluoride salt mixture | - | Conceptual design | Commerical | 270 | 115 | - | 42.5 | Rankine | Thermal | Multiple | |
MYRRHA | Multi-purpose hYbrid Research Reactor for High-tech Applications | Belgian Nuclear Research Centre (SCK•CEN) | ![]() |
LFR | No Moderator | MOX | - | Under design | Experimental | 100 | - | - | - | - | Fast | - | |
NuScale | NuScale SMR | NuScale Power Inc. | ![]() |
iPWR | UO2 | 4.95 | Under regulatory review | Commerical | 200 | 60 | 57 | 28.5 | Rankine | Thermal | - | ||
NUWARD | NUWARD | CEA EDF Naval Group and Technicatome | ![]() |
PWR | UO2 | 4.95 | Conceptual design | Commercial | 540 | 185 | 170 | 31 | Rankine | Thermal | Optional | ||
OPR1000 | Advanced Power Reactor | KEPCO/KHNP | ![]() |
PWR | UO2 | 4 | Operational | Commerical | 2815 | 1050 | 1000 | 35.5 | Rankine | Thermal | - | ||
PBMR | Pebble Bed Modular Reactor | Pebble Bed Modular Reactor (Pty) Limited | ![]() |
GCR | UO2 | - | On Hold | Commerical | 400 | 165 | 165 | 40 | - | Thermal | - | ||
PEACER | Proliferation-resistant Environment-friendly Accident-tolerant Continuable and Economical Reactor | Seoul National University | ![]() |
LFR | No Moderator | U-TRU-Zr | - | Conceptual design | Demonstration | 850 | 300 | 300 | - | - | Fast | - | |
PGSFR | Prototype Gen-IV Sodium-cooled Fast Reactor | KAERI | ![]() |
SFR | No Moderator | U-Zr and U-TRU-Zr | - | Conceptual design | Demonstration | 150 | - | - | - | - | Fast | - | |
PRISM | Power Reactor Innovative Small Reactor | GE-Hitachi | ![]() |
SFR | No Moderator | U-Pu-Zr | 26 | Under design | Commerical | 840 | 311 | 311 | - | Rankine | Fast | - | |
Prismatic HTR | Prismatic Modular High Temperature GCR | General Atomics | ![]() |
GCR | UO2 | 15.5 | Under design | Commerical | 350 | 150 | - | 42.8 | Rankine | Thermal | - | ||
RMWR | Reduced-Moderation Water Reactor | JAEA | ![]() |
BWR | UO2 and MOX | 11.4 | Under design | Demonstration | 3926 | 1356 | 1300 | 40 | - | Thermal | - | ||
SC-HTGR | Steam Cycle High Temperature Gas-cooled Reactor | Framatome | ![]() |
GCR | UCO | 15.5 | Conceptual design | Commercial | 625 | 282 | 272 | 43 | Rankine | Thermal | Industrial process heat | ||
SEALER | Swedish Advanced Lead Reactor | LeadCold | ![]() |
LFR | No Moderator | UN | 11.8 | Conceptual design | Commercial | 140 | 58 | 55 | 39.3 | Rankine | Fast | - | |
SmAHTR | Small fluoride salt-cooled High Temperature Reactor | Oak Ridge National Laboratory | ![]() |
MSR | Fluoride Salts | UCO | 8 | Under design | Demonstration | 125 | - | - | - | - | Thermal | H2 production | |
SMART | System-Integrated Modular Advanced Reactor | KAERI | ![]() |
iPWR | UO2 | 4.8 | Licensed | Commerical | 330 | 100 | 90 | 30.3 | Rankine | Thermal | Desalination | ||
SVBR-100 | SVBR-100 | AKME Engineering | ![]() |
LFR | No Moderator | UO2 | 16.5 | Under design | Commerical | 280 | 101 | 101 | - | Rankine | Fast | - | |
ThorCon | ThorCon | ThorCon US, Inc. | ![]() |
MSR | Molten Salt | UF4, ThF4 | 19.7 | Detailed design | Commercial | 557 | 258 | 250 | 46.4 | Rankine | Thermal | - | |
TWR-P | Travelling Wave Reactor-Prototype | TerraPower | ![]() |
SFR | No Moderator | U-Zr | - | Under design | Commerical | 1475 | 600 | 600 | - | - | Fast | - | |
UK-SMR | UK Small Modular Reactor | Rolls Royce & Partners | ![]() |
PWR | UO2 | 4.95 | Conceptual design | Commercial | 1276 | 443 | 443 | 34.7 | Rankine | Thermal | Optional, configurable | ||
VBER-300 | VBER-300 | OKBM | ![]() |
PWR | UO2 | 4.95 | Under design | Commerical | 917 | 325 | 300 | 33 | Rankine | Thermal | Distric heat | ||
VVER-1000 (V-466B) | VVER-1000 (V-466B) | Gidropress | ![]() |
PWR | UO2 | 4.45 | Under construction | Commerical | 3000 | 1060 | 1011 | 33.7 | Rankine | Thermal | District heat | ||
VVER-1200 (V-392M) | VVER-1200 (V-392M) | Gidropress | ![]() |
PWR | UO2 | 4.79 | Under construction | Commerical | 3200 | 1170 | 1082 | 33.9 | Rankine | Thermal | District heat | ||
VVER-1200 (V-491) | VVER-1200 (V-491) | Gidropress | ![]() |
PWR | UO2 | 4.79 | Under design | Commerical | 3200 | 1170 | 1082 | 33.9 | Rankine | Thermal | District heat | ||
VVER-1500 (V-448) | VVER-1500 (V-448) | Gidropress | ![]() |
PWR | UO2 | 4.92 | Under design | Commerical | 4250 | 1560 | 1560 | 35.7 | Rankine | Thermal | - | ||
VVER-300 (V-478) | VVER-300 (V-478) | Gidropress | ![]() |
PWR | UO2 | 4.79 | Under design | Commerical | 850 | - | 300 | 35.3 | Rankine | Thermal | - | ||
VVER-600 (V-498) | VVER-600 (V-498) | Gidropress | ![]() |
PWR | UO2 | - | Under design | Commerical | 1600 | 600 | 600 | 35 | Rankine | Thermal | - | ||
VVER-640 (V-407) | VVER-640 (V-407) | Gidropress | ![]() |
PWR | UO2 | 3.18 | Under design | Commerical | 1800 | 645 | 603 | 33.3 | Rankine | Thermal | District heat | ||
W-LFR | Westinghouse Lead-cooled Fast Reactor | Westinghouse Electric Company LLC | ![]() |
LFR | No Moderator | Oxide (UO2 or MOX) (prototype) Advanced fuel(commercial) | - | Conceptual design | Demonstration | 950 | 468 | 460 | 48.4 | "Brankine" (Condensing sCO2) | Fast | - |
Gen IV compact
[edit]Acronym | Country | Type | Coolant | Moderator | Fuel | Enrichment (wt %) | Design status | Thermal output (MWth) | Gross electrical output (MWe) | Net electrical output (MWe) | Net efficiency |
---|---|---|---|---|---|---|---|---|---|---|---|
4S | ![]() |
SFR | U-10Zr | 17 | Detailed design | 30 | 10 | 10 | 33.3 | ||
ABWR | ![]() |
BWR | UO2 | 4 | Operational | 3926 | 1420 | 1350 | 34 | ||
ABWR-II | ![]() |
BWR | UO2 | 5.2 | Under Design | 4960 | 1717 | 1638 | 33 | ||
ACR-1000 | ![]() |
HWR | UO2 | 2.4 | Under Design | 3200 | 1165 | 1082 | 36.5 | ||
AHWR | ![]() |
HWR | MOX | 3.25 | Under Design | 920 | 304 | 284 | 30.9 | ||
ALFRED | ![]() |
LFR | No Moderator | MOX | - | Under Design | 300 | 125 | 125 | - | |
ALLEGRO | ![]() |
GFR | No Moderator | MOX | - | Under Design | 75 | - | - | - | |
AP 1000 | ![]() |
PWR | UO2 | 4.8 | Construction | 3400 | 1200 | 1100 | 32 | ||
AP-600 | ![]() |
PWR | UO2 | 4.8 | On Hold | 1940 | - | 600 | 31 | ||
APR+ | ![]() |
PWR | UO2 | 4.26 | Licensed | 4290 | 1560 | 1505 | 35.1 | ||
APR1000 | ![]() |
PWR | UO2 | 4 | Operational | 2815 | 1050 | 1000 | 35.5 | ||
APR1400 | ![]() |
PWR | UO2 | 4.65 | Operational | 3983 | 1465 | 1400 | 35.1 | ||
APWR | ![]() |
PWR | UO2 | - | Under Design | 4466 | 1538 | 1500 | 34.4 | ||
ASTRID | ![]() |
SFR | No Moderator | MOX | 20 | Under Design | 1500 | 600 | 600 | - | |
ATMEA1 | ![]() |
PWR | UO2 and MOX | 5 | Under Design | 3150 | 1200 | 1150 | 36 | ||
BN-1200 | ![]() |
SFR | No Moderator | Nitride or MOX | - | Construction | 2800 | 1220 | 1140 | 40.7 | |
BREST-OD-300 | ![]() |
LFR | No Moderator | PuN–UN | 13.5 | Under Design | 700 | 300 | 300 | - | |
BWRX-300 | ![]() |
BWR | UO2 | 3.4 | Conceptual Design | 870 | 300 | 290 | 33 | ||
CFR-600 | ![]() |
SFR | No Moderator | UO2 and MOX | - | Conceptual Design | 1500 | 600 | 600 | 40 | |
CLEAR-I | ![]() |
LFR | No Moderator | UO2 | - | Conceptual Design | 10 | - | - | - | |
CSR1000 | ![]() |
SCWR | UO2 | 6.2 | Conceptual Design | 2300 | 1000 | - | 43.5 | ||
EC6 | ![]() |
HWR | UO2 | 0.7 | Under Design | 2084 | 740 | 690 | 35.5 | ||
ELECTRA | ![]() |
LFR | No Moderator | (Pu,Zr)N | - | Under Design | 0.5 | - | - | - | |
ELFR | ![]() |
LFR | No Moderator | MOX | - | Conceptual Design | 1500 | 630 | 630 | 40 | |
EM2 | ![]() |
GFR | No Moderator | UC | 7.7 | Conceptual Design | 500 | 272 | 265 | 53 | |
EPR | ![]() |
PWR | UO2 and MOX | 4.95 | Construction | 4590 | 1770 | 1650 | 36 | ||
ESBWR | ![]() |
BWR | UO2 | - | Licensed | 4500 | 1600 | 1520 | 34 | ||
FBNR | ![]() |
PWR | CERMET | 5 | Under Design | 218 | 72 | 70 | 33 | ||
FBR-1 & 2 | ![]() |
SFR | No Moderator | MOX | - | Under Design | 1250 | 500 | 500 | 41.7 | |
G4M | ![]() |
LFR | No Moderator | Uranium nitride | 19.75 | Under Design | 70 | 25 | 25 | - | |
GTHTR300C | ![]() |
GCR | Graphite | UO2 and MOX | 14.3 | Conceptual Design | 600 | 274 | - | 47 | |
HAPPY200 | ![]() |
PWR | UO2 | 2.76 | Detailed design | 200 | - | - | - | ||
HP-LWR | ![]() |
SCWR | UO2 | 9 | Conceptual Design | 2300 | 1046 | 1000 | 43.5 | ||
HTR-PM | ![]() |
GCR | Graphite | UO2 | 8.5 | Construction | 500 | 211 | 200 | - | |
IMR | ![]() |
iPWR | UO2 | 4.8 | Under Design | 1000 | 350 | 350 | 35 | ||
IMSR-400 | ![]() |
MSR | Fluoride Salts | Graphite | UF4 | 5-19 | Under Design | 400 | 194 | 185 | 46 |
IPHWR-220 | ![]() |
HWR | UO2 | 0.7 | Operational | 754 | 235.81 | 210 | 28 | ||
IPHWR-700 | ![]() |
HWR | UO2 | 0.7 | Operational | 2166 | 700 | 630 | 29 | ||
JSCWR | ![]() |
SCWR | UO2 | 7.2 | Conceptual Design | 3681 | 700 | 1620 | 44 | ||
JSFR | ![]() |
SFR | No Moderator | MOX | - | Under Design | 3530 | 750 | 750 | - | |
KAMADO FBR | ![]() |
GFR | Carbon Dioxide | No Moderator | UO2 and MOX | 18 | Conceptual Design | 3000 | 1000 | 1000 | 33.3 |
KERENA | ![]() |
BWR | UO2 and MOX | 4.95 | Under Design | 3370 | 1290 | 1250 | 37 | ||
KLT-40S | ![]() |
PWR | UO2 | 13 | Construction | 300 | 70 | 60 | 23.3 | ||
LFR-AS-200 | ![]() |
LFR | No moderator | MOX | 19 | Conceptual Design | 480 | 212 | 200 | 42 | |
LFTR | ![]() |
MSR | Fluoride Salts | Graphite | Molten salt with thorium and uranium | - | Conceptual Design | 600 | 250 | - | 45 |
MBIR | ![]() |
SFR | No Moderator | MOX | - | Under Design | 150 | 60 | 60 | - | |
Mk1 PB-FHR | ![]() |
MSR | Fluoride Salts | Graphite | UCO | 19.8 | Under Design | 236 | 100 | - | 42.5 |
MoveluX | ![]() |
SMR (micro) | Calcium hydride (CaH2) | U3Si2 | 4.8 | Conceptual Design | 10 | 3.5 | 3.5 | 35 | |
MSFR | ![]() |
MSR | Molten Salt | No Moderator | LiF-(U,Pu)F3-ThF4 | - | Conceptual Design | 3000 | 1500 | 1500 | - |
MSR-FUJI | ![]() |
MSR | Fluoride Salts | Graphite | Molten salt with thorium and uranium | 2 | Conceptual Design | 450 | 207 | 200 | 44.4 |
MSTW | ![]() |
MSR | Molten Salt | Graphite | Eutectic Sodium-actinide fluoride salt mixture | - | Conceptual Design | 270 | 115 | - | 42.5 |
MYRRHA | ![]() |
LFR | No Moderator | MOX | - | Under Design | 100 | - | - | - | |
NuScale | ![]() |
iPWR | UO2 | 4.95 | Under Regulatory Review | 200 | 60 | 57 | 28.5 | ||
NUWARD | ![]() |
PWR | UO2 | 4.95 | Conceptual Design | 540 | 185 | 170 | 31 | ||
OPR1000 | ![]() |
PWR | UO2 | 4 | Operational | 2815 | 1050 | 1000 | 35.5 | ||
PBMR | ![]() |
GCR | Graphite | UO2 | - | On Hold | 400 | 165 | 165 | 40 | |
PEACER | ![]() |
LFR | No Moderator | U-TRU-Zr | - | Conceptual Design | 850 | 300 | 300 | - | |
PGSFR | ![]() |
SFR | No Moderator | U-Zr and U-TRU-Zr | - | Conceptual Design | 150 | - | - | - | |
PRISM | ![]() |
SFR | No Moderator | U-Pu-Zr | 26 | Under Design | 840 | 311 | 311 | - | |
Prismatic HTR | ![]() |
GCR | Graphite | UO2 | 15.5 | Under Design | 350 | 150 | - | 42.8 | |
RMWR | ![]() |
BWR | UO2 and MOX | 11.4 | Under Design | 3926 | 1356 | 1300 | 40 | ||
SC-HTGR | ![]() |
GCR | Graphite | UCO | 15.5 | Conceptual Design | 625 | 282 | 272 | 43 | |
SEALER | ![]() |
LFR | Lead | No Moderator | UN | 11.8 | Conceptual Design | 140 | 58 | 55 | 39.3 |
SmAHTR | ![]() |
MSR | Fluoride Salts | Graphite | UCO | 8 | Under Design | 125 | - | - | - |
SMART | ![]() |
iPWR | UO2 | 4.8 | Licensed | 330 | 100 | 90 | 30.3 | ||
SVBR-100 | ![]() |
LFR | No Moderator | UO2 | 16.5 | Under Design | 280 | 101 | 101 | - | |
ThorCon | ![]() |
MSR | Molten Salt | Graphite | UF4, ThF4 | 19.7 | Detailed design | 557 | 258 | 250 | 46.4 |
TWR-P | ![]() |
SFR | No Moderator | U-Zr | - | Under Design | 1475 | 600 | 600 | - | |
UK-SMR | ![]() |
PWR | UO2 | 4.95 | Conceptual Design | 1276 | 443 | 443 | 34.7 | ||
VBER-300 | ![]() |
PWR | UO2 | 4.95 | Under Design | 917 | 325 | 300 | 33 | ||
VVER-1000 (V-466B) | ![]() |
PWR | UO2 | 4.45 | Construction | 3000 | 1060 | 1011 | 33.7 | ||
VVER-1200 (V-392M) | ![]() |
PWR | UO2 | 4.79 | Construction | 3200 | 1170 | 1082 | 33.9 | ||
VVER-1200 (V-491) | ![]() |
PWR | UO2 | 4.79 | Under Design | 3200 | 1170 | 1082 | 33.9 | ||
VVER-1500 (V-448) | ![]() |
PWR | UO2 | 4.92 | Under Design | 4250 | 1560 | 1560 | 35.7 | ||
VVER-300 (V-478) | ![]() |
PWR | UO2 | 4.79 | Under Design | 850 | - | 300 | 35.3 | ||
VVER-600 (V-498) | ![]() |
PWR | UO2 | - | Under Design | 1600 | 600 | 600 | 35 | ||
VVER-640 (V-407) | ![]() |
PWR | UO2 | 3.18 | Under Design | 1800 | 645 | 603 | 33.3 | ||
W-LFR | ![]() |
LFR | No Moderator | Oxide (UO2 or MOX) (prototype) Advanced fuel(commercial) | - | Conceptual Design | 950 | 468 | 460 | 48.4 |
Generation V designs
[edit]Name | Fuel phase | Fuel | Moderator | Coolant | Enrichment | Organization |
---|---|---|---|---|---|---|
GCR/VCR-MHD | Gas | or | University of Florida | |||
GCR-U-C-F | Gas | and | Eindhoven University of Technology | |||
GCR-UF6 | Gas | Los Alamos National Laboratory | ||||
Plasma Core | Gas | Los Alamos National Laboratory | ||||
LM-FR | Liquid | or | ||||
US nuclear bomb evolution
[edit]Confirmed Pre-Columbian transoceanic contacts
[edit]Contact began | Contact ended | Location | ||
---|---|---|---|---|
Paleo-Indian migration | 18,000 BCE | 13,000 BCE | ![]() | |
Norse settlements in Greenland | 986 | 1350-1500 | ![]() | |
Norse settlement in Newfoundland | 1000s | 1000s | ![]() | |
Austronesian-South American contact | 1150 | 1380 | ![]() | |
Trans-Bering Strait contact | ||||
Columbus' first voyage | 1492 | ![]() |
List of X-planes
[edit]Type | Manufacturer | Agency | Date | Status | Regime | Control | Role | Notes |
---|---|---|---|---|---|---|---|---|
X-1 | Bell | USAF, NACA | 1946 | Flew | Supersonic | Manned | High-speed and high-altitude flight | First aircraft to break the sound barrier in level flight. Proved aerodynamic viability of thin wing sections.[46] |
X-1A X-1B X-1C X-1D | Bell | USAF, NACA | 1951 | Flew | Supersonic | Manned | High-speed and high-altitude flight | |
X-1E | Bell | USAF, NACA | 1955 | Flew | Supersonic | Manned | High-speed and high-altitude flight | |
X-2 | Bell | USAF | 1952 | Flew | Supersonic | Manned | High-speed and high-altitude flight | First aircraft to exceed Mach 3.[47] |
X-3 Stiletto | Douglas | USAF, NACA | 1952 | Flew | Supersonic | Manned | Highly loaded trapezoidal wing | Titanium alloy construction; Underpowered, but provided insights into inertia coupling.[48] |
X-4 Bantam | Northrop | USAF, NACA | 1948 | Flew | Transonic | Manned | Transonic tailless aircraft[49] | |
X-5 | Bell | USAF, NACA | 1951 | Flew | Transonic | Manned | variable geometry | First aircraft to fly with variable wing sweep.[50] |
X-6 | Convair | USAF, AEC | 1957 | Subsonic | Manned | Nuclear Propulsion | Not built. The Convair NB-36H experiment, a B-36 modified to carry (but not powered by) a nuclear reactor, flew from 1955 to 1957.[51][52] | |
X-7 | Lockheed | USAF, USA, USN | 1951 | Flew | Supersonic | Unmanned | Ramjet engines.[53] | |
X-8 Aerobee | Aerojet | NACA, USAF, USN | 1949 | Flew | Unmanned | Upper air research[54] | Later models used as sounding rockets. | |
X-9 Shrike | Bell | USAF | 1949 | Flew | Unmanned | Guidance and propulsion technology | Assisted development of GAM-63 Rascal missile.[55] | |
X-10 | North American | USAF | 1953 | Flew | Unmanned | SM-64 Navajo missile testbed.[56] | ||
X-11 | Convair | USAF | 1953 | Flew | Unmanned | Proposed SM-65 Atlas missile testbed.[57] | ||
X-12 | Convair | USAF | 1953 | Flew | Unmanned | Proposed SM-65 Atlas missile testbed.[58] | ||
X-13 Vertijet | Ryan | USAF, USN | 1955 | Flew | Manned | Vertical takeoff and landing (VTOL) | tailsitting VTOL flight.[59] | |
X-14 | Bell | USAF, NASA | 1957 | Flew | Manned | VTOL | Vectored thrust configuration for VTOL flight.[60] | |
X-15 | North American | USAF, NASA | 1959 | Flew | Hypersonic | Manned | Hypersonic, high-altitude flight | First crewed hypersonic aircraft; capable of suborbital spaceflight.[61] |
X-15A-2 | North American | USAF, NASA | 1964 | Flew | Hypersonic | Manned | Hypersonic, high-altitude flight | Major Pete Knight flew the X-15A-2 to a Mach 6.70, making it the fastest piloted flight of the X-plane program. |
X-16 | Bell | USAF | 1954 | Manned | High-altitude reconnaissance[62] | "X-16" designation used to hide true purpose.[63] Canceled and never flew. | ||
X-17 | Lockheed | USAF, USN | 1956 | Flew | Unmanned | High Mach number reentry.[64] | ||
X-18 | Hiller | USAF, USN | 1959 | Flew | Subsonic | Manned | Vertical and/or short take-off and landing (V/STOL) | Evaluated the tiltwing concept for VTOL flight.[65] |
X-19 | Curtiss-Wright | Tri-service | 1963 | Flew | Subsonic | Manned | Tandem tiltrotor VTOL[66] | XC-143 designation requested but turned down.[67] |
X-20 Dyna-Soar | Boeing | USAF | 1963 | Subsonic | Manned | Reusable spaceplane | Intended for military missions.[68] Canceled and never built. | |
X-21A | Northrop | USAF | 1963 | Flew | Subsonic | Manned | Boundary layer control[69] | |
X-22 | Bell | Tri-service | 1966 | Flew | Subsonic | Manned | Quad ducted fan tiltrotor STOVL[70] | |
X-23 PRIME | Martin Marietta | USAF | 1966 | Maneuvering atmospheric reentry[71] | Designation never officially assigned.[67] | |||
X-24A | Martin Marietta | USAF, NASA | 1969 | Supersonic | Manned | Low-speed lifting body[72] | ||
X-24B | Martin Marietta | USAF, NASA | 1973 | Supersonic | Manned | Low-speed lifting body[73] | ||
X-25 | Bensen | USAF | 1955 | Manned | Commercial light autogyro for downed pilots.[74] | |||
X-26 Frigate | Schweizer | DARPA, US Army, USN | 1967 | Manned | Training glider for yaw-roll coupling Quiet observation aircraft[75] | |||
X-27 | Lockheed | None | 1971 | high-performance research aircraft. High-performance fighter[76] | Proposed development of Lockheed CL-1200 Lancer. Canceled and never flew. | |||
X-28 Sea Skimmer | Osprey | USN | 1970 | Low-cost aerial policing seaplane[77] | ||||
X-29 | Grumman | DARPA, USAF, NASA | 1984 | Manned | Forward-swept wing[78] | |||
X-30 NASP | Rockwell | NASA, DARPA, USAF | 1993 | Single-stage-to-orbit spaceplane[79] | Canceled and never built. | |||
X-31 | Rockwell-MBB | DARPA, USAF, BdV | 1990 | Thrust vectoring supermaneuverability[80] | ||||
X-32A | Boeing | USAF, USN, USMC, RAF | 2000 | Supersonic | Manned | Joint Strike Fighter[81] | ||
X-32B | 2001 | Supersonic | Manned | |||||
X-33 | Lockheed Martin | NASA | 2001 | Manned | Half-scale reusable launch vehicle prototype.[82] | Prototype never completed. | ||
X-34 | Orbital Sciences | NASA | 2001 | Hypersonic | Reusable pilotless spaceplane.[83] | Never flew. | ||
X-35A | Lockheed Martin | USAF, USN, USMC, RAF | 2000 | Supersonic | Manned | Joint Strike Fighter[84] | ||
X-35B | 2001 | Supersonic | Manned | First in family to use VTOL. Also used unconventional mode of lift engine (lift fan). | ||||
X-35C | 2000 | Supersonic | Manned | |||||
X-36 | McDonnell Douglas | NASA | 1997 | Manned | 28% scale tailless fighter[85] | |||
X-37 | Boeing | USAF, USSF, NASA | 2010 | Hypersonic | Reusable orbital spaceplane[86] | Drop test performed in 2006. Seven flights to space since 22 April 2010 | ||
X-38 | Scaled Composites | NASA | 1998 | Hypersonic | Lifting body Crew Return Vehicle[87] | |||
X-39 | Unknown | USAF | Future Aircraft Technology Enhancements (FATE) program.[88] | Designation never officially assigned.[67] | ||||
X-40A | Boeing | USAF, NASA | 1998 | 80% scale Space Maneuver Vehicle X-37 prototype.[89] | ||||
X-41 | Unknown | USAF | Hypersonic | Maneuvering re-entry vehicle.[90] | ||||
X-42 | Unknown | USAF | Expendable liquid propellant upper-stage rocket.[91] | |||||
X-43 Hyper-X | Micro-Craft | NASA | 2001 | Hypersonic | Hypersonic Scramjet[92] | |||
X-44 MANTA | Lockheed Martin | USAF, NASA | 2000 | F-22-based Multi-Axis No-Tail Aircraft thrust vectoring[93] | Canceled, never flew. | |||
X-45 | Boeing | DARPA, USAF | 2002 | Unmanned | Unmanned combat air vehicle (UCAV)[94] | |||
X-46 | Boeing | DARPA, USN | 2003 | Unmanned | Unmanned combat air vehicle (UCAV).[95] | Naval use. Canceled, never flew. | ||
X-47A Pegasus | Northrop Grumman | DARPA, USN | 2003 | Unmanned | Unmanned combat air vehicle (UCAV)[96] | Naval use. | ||
X-47B | Northrop Grumman | DARPA, USN | 2011 | Unmanned | UCAV | Naval use. | ||
X-47C | Northrop Grumman | USAF | Manned bomber | Proposal for a new-generation strategic bomber. Design only. | ||||
X-48 | Boeing | NASA | 2007 | Blended Wing Body (BWB)[97] | ||||
X-49 SpeedHawk | Piasecki | US Army | 2007 | Compound helicopter Vectored Thrust Ducted Propeller (VTDP) testbed.[98] | ||||
X-50 Dragonfly | Boeing | DARPA | 2003 | Canard Rotor/Wing[99] | ||||
X-51 Waverider | Boeing | USAF | 2010[100] | Hypersonic | Unmanned | Hypersonic scramjet[101] | ||
X-52 | — | — | — | — | Number skipped to avoid confusion with Boeing B-52 Stratofortress.[67] | |||
X-53 | Boeing | NASA, USAF | 2002 | Supersonic | Manned | Active Aeroelastic Wing[102] | ||
X-54 | Gulfstream | NASA | Low-noise supersonic transport[103] in development. | |||||
X-55 | Lockheed Martin | USAF | 2009 | Advanced Composite Cargo Aircraft (ACCA)[104] | ||||
X-56 | Lockheed Martin | USAF/NASA | 2013 | Active flutter suppression and gust load alleviation | Part of the high-altitude, long-endurance (HALE) reconnaissance aircraft program.[105] | |||
X-57 Maxwell | ESAero/Tecnam | NASA | 2023 | Low emission plane powered entirely by electric motors[106] | Part of NASA's Scalable Convergent Electric Propulsion Technology Operations Research project[106] (SCEPTOR). Cancelled in 2023, never flew. | |||
X-58 | — | — | — | — | Number skipped; slot apparently assigned to Kratos XQ-58 Valkyrie.[107] | |||
X-59 Quesst | Lockheed Martin | NASA | 2024 | Prototype quiet supersonic transport aircraft[108] | ||||
X-60 | Generation Orbit Launch Services | USAF | Hypersonic rocket | Unmanned | Air-launched rocket for hypersonic flight research[109] | |||
X-61 Gremlins | Dynetics | DARPA | 2020 | Unmanned | Air-launched and air-recoverable reconnaissance unmanned air vehicle (UAV)[110][111] | |||
X-62 VISTA | Lockheed Martin/Calspan | USAF | 2021 | Supersonic | Manned | Variable In-flight Simulator Test Aircraft. | First flew in 1993 as the NF-16D (for the MATV program). Designated the X-62A during a major research system upgrade in 2021. Assigned to the USAF Test Pilot School.[112] | |
X-63 | — | — | — | — | Number skipped | |||
X-64 | — | — | — | — | Number skipped | |||
X-65 CRANE | Aurora Flight Sciences | DARPA | 2025 | Subsonic | Control of Revolutionary Aircraft with Novel Effectors[113] | |||
X-66 | Boeing | NASA | 2028 | Transonic | Manned | Transonic Truss-Braced Wing[114] |
List of Tupolev aircraft
[edit]Image | Name | NATO | Year | Role | Number built | Status | Notes |
---|---|---|---|---|---|---|---|
Tu-1 | 1946 | Fighter | 1 | Prototype | |||
Tu-2 | "Bat" | 1941 | Medium bomber | 2,257 | |||
Tu-4 | "Bull" | 1947 | Strategic bomber | 847 | Copied from several seized Boeing B-29 Superfortress | ||
Tu-6 | 1946 | Reconnaissance | Alternate name for the Tu-2P | ||||
Tu-8 | 1947 | Medium bomber | 1 | Long-range variant of the Tu-2 | |||
Tu-10 | "Frosty" | 1943 | Medium bomber | High-altitude variant of the Tu-2 | |||
Tu-12 | 1947 | Medium bomber | 6 | First Soviet jet bomber, variant of the Tu-2 | |||
Tu-14 | "Bosun" | 1949 | Torpedo bomber | ~150 | Jet torpedo bomber | ||
Tu-18 | 1947 | Medium bomber | 0 | Jet variant of Tu-8 | |||
Tu-20 | "Bear" | 1952 | Bomber | ||||
Tu-144 | "Charger" | 1968 | Passenger | Retired | |||
Tu-160 | "Blackjack" | 1981 | Bomber | In service |
Kurchatov
[edit]Name | Type | Enrichment | Criticality | Shutdown | Power | Application |
---|---|---|---|---|---|---|
F-1 | ||||||
VVR-2 | ||||||
RFT | ||||||
MR | ||||||
IRT | ||||||
IR-8 | ||||||
IIN-3M "Gidra" | ||||||
GAMMA | ||||||
Argus | ||||||
OR | ||||||
Romashka | ||||||
SF-1 | ||||||
SF-3 | ||||||
SF-5 | ||||||
SF-7 | ||||||
Kvant | ||||||
MR model | ||||||
Delta | ||||||
UG | ||||||
RBMK | ||||||
B-1000 | ||||||
ASTRA | ||||||
EFIR-2M | ||||||
MAYAK | ||||||
"NARCIS"M2 | ||||||
GROG | ||||||
P | ||||||
ISKRA |
References
[edit]- ^ Likely a mixture of primarily triuranium octoxide and some uranium dioxide
- ^ Early piles evaluated the neutron multiplication factor, k, for a pile by extrapolating its size to infinity, thus it measures only the suitability of the geometry and material purity.
- ^ Kristensen, Hans M.; Korda, Matt; Johns, Eliana; Knight, Mackenzie (2024-05-03). "United States nuclear weapons, 2024". Bulletin of the Atomic Scientists. 80 (3): 182–208. doi:10.1080/00963402.2024.2339170. ISSN 0096-3402. Retrieved 2025-04-06.
- ^ Kristensen, Hans M.; Korda, Matt; Johns, Eliana; Knight, Mackenzie (2024-09-02). "Indian nuclear weapons, 2024". Bulletin of the Atomic Scientists. 80 (5): 326–342. doi:10.1080/00963402.2024.2388470. ISSN 0096-3402. Retrieved 2025-04-07.
- ^ Kim, Chul Min; Park, Hyeon Seok; Yim, Man-Sung (2025-02-05). "Nuclear latency, nuclear power, and nuclear proliferation". The Nonproliferation Review: 1–34. doi:10.1080/10736700.2024.2406590. ISSN 1073-6700.
- ^ McCauley, Joseph L. (2025). "Predictions of critical radii for reactors and bombs 1939–45 including the Frisch–Peierls memorandum". The European Physical Journal H. 50 (1). doi:10.1140/epjh/s13129-024-00088-1. ISSN 2102-6459.
- ^ Reed, B. Cameron (2014). "The Feed Materials Program of the Manhattan Project: A Foundational Component of the Nuclear Weapons Complex". Physics in Perspective. 16 (4): 461–479. doi:10.1007/s00016-014-0146-4. ISSN 1422-6944.
- ^ PODVIG, PAVEL (2011-04-25). "History of Highly Enriched Uranium Production in Russia". Science & Global Security. 19 (1). Informa UK Limited: 46–67. doi:10.1080/08929882.2011.566467. ISSN 0892-9882.
- ^ Bukharin, Oleg; Cochran, Thomas B.; Norris, Robert S. (October 1999). "New Perspectives on Russia's Ten Secret Cities" (PDF). Nuclear Weapons Databook, Natural Resources Defense Council Nuclear Program.
- ^ Sokova, Elena (2002-05-31). "Russia's Ten Nuclear Cities". The Nuclear Threat Initiative. Retrieved 2025-01-14.
- ^ a b Reed, Bruce Cameron (2020). "Piles and Secret Cities". Manhattan Project. Cham: Springer International Publishing. p. 149–169. doi:10.1007/978-3-030-45734-1_5. ISBN 978-3-030-45733-4.
- ^ Reed, B. Cameron (2021). "An inter-country comparison of nuclear pile development during World War II". The European Physical Journal H. 46 (1): 15. arXiv:2001.09971. Bibcode:2021EPJH...46...15R. doi:10.1140/epjh/s13129-021-00020-x. ISSN 2102-6459.
- ^ Reed, B. Cameron (2021). "An inter-country comparison of nuclear pile development during World War II". The European Physical Journal H. 46 (1): 15. arXiv:2001.09971. Bibcode:2021EPJH...46...15R. doi:10.1140/epjh/s13129-021-00020-x. ISSN 2102-6459.
- ^ Nuclear reactors built, being built, or planned 1993 (Report). Office of Scientific and Technical Information (OSTI). 1993-08-01. doi:10.2172/10141005. Retrieved 2025-01-10.
- ^ Reed, B. Cameron (2021). "An inter-country comparison of nuclear pile development during World War II". The European Physical Journal H. 46 (1): 15. arXiv:2001.09971. Bibcode:2021EPJH...46...15R. doi:10.1140/epjh/s13129-021-00020-x. ISSN 2102-6459.
- ^ "Manhattan Project: Places > Metallurgical Laboratory > CP-2 and CP-3". OSTI.GOV. Retrieved 2024-12-25.
- ^ Nuclear reactors built, being built, or planned 1993 (Report). Office of Scientific and Technical Information (OSTI). 1993-08-01. doi:10.2172/10141005. Retrieved 2025-01-10.
- ^ "Timeline". Nuclear Museum. 1920-06-03. Retrieved 2024-11-07.
- ^ Reed, B. Cameron (2021). "An inter-country comparison of nuclear pile development during World War II". The European Physical Journal H. 46 (1): 15. arXiv:2001.09971. Bibcode:2021EPJH...46...15R. doi:10.1140/epjh/s13129-021-00020-x. ISSN 2102-6459.
- ^ Klein, Steven; Kimpland, Robert (2014-05-28). Discussion Regarding Aqueous Homogeneous Reactor (AHR) Benchmarks (Report). doi:10.2172/1133322. Retrieved 2024-12-30.
- ^ a b c d "Plutonium: The First 50 Years". FAS Project on Government Secrecy (1991-2021). 1994-09-30. Retrieved 2024-12-24.
- ^ Kimpland, Robert; Grove, Travis; Jaegers, Peter; Malenfant, Richard; Myers, William (2021-12-03). "Critical Assemblies: Dragon Burst Assembly and Solution Assemblies". Nuclear Technology. 207 (sup1): S81 – S99. arXiv:2103.05780. Bibcode:2021NucTe.207S..81K. doi:10.1080/00295450.2021.1927626. ISSN 0029-5450.
- ^ "ZEEP -- Canada's First Nuclear Reactor". Canada Science and Technology Museum. Archived from the original on 6 March 2014.
- ^ Patenaude, Hannah K.; Freibert, Franz J. (2023-03-09). "Oh, My Darling Clementine: A Detailed History and Data Repository of the Los Alamos Plutonium Fast Reactor". Nuclear Technology. 209 (7). Informa UK Limited: 963–1007. Bibcode:2023NucTe.209..963P. doi:10.1080/00295450.2023.2176686. ISSN 0029-5450.
- ^ Hurst, D.G. (1997). Canada Enters the Nuclear Age: A Technical History of Atomic Energy of Canada Limited as Seen from Its Research Laboratories. McGill-Queen's University Press. p. 45. ISBN 978-0-7735-6653-8. Retrieved 2024-12-31.
- ^ Hill, C (2013). An Atomic Empire: A Technical History of the Rise and Fall of the British Atomic Energy Programme. Imperial College Press. ISBN 978-1-908977-41-0.
- ^ a b Diakov, Anatoli (2011-04-25). "The History of Plutonium Production in Russia". Science & Global Security. 19 (1): 28–45. Bibcode:2011S&GS...19...28D. doi:10.1080/08929882.2011.566459. ISSN 0892-9882.
- ^ "Magnox BEPO reactor 75th Anniversary". GOV.UK. 2023-07-03. Retrieved 2025-01-13.
- ^ "Irène and Frédéric Joliot-Curie". Institut Curie. Archived from the original on 2010-06-03. Retrieved 26 April 2010.
- ^ "ФКБН / Сводный указатель объектов / Атомный проект СССР // Электронная библиотека /// История Росатома". Электронная библиотека /// История Росатома (in Russian). Retrieved 2025-01-10.
- ^ Loffe, B. L.; Shvedov, O. V. (1999). "Heavy water reactors and nuclear power plants in the USSR and Russia: Past, present, and future". Atomic Energy. 86 (4): 295–304. doi:10.1007/BF02673145. ISSN 1063-4258.
- ^ Needell, Allan A. (1983). "Nuclear Reactors and the Founding of Brookhaven National Laboratory". Historical Studies in the Physical Sciences. 14 (1). University of California Press: 93–122. ISSN 0073-2672. JSTOR 27757526. Retrieved 2025-01-05.
- ^ "INEL - MTR handbook Appendix F (historical backgroup)" (PDF). p. 222. Archived from the original (PDF) on 2006-09-30. Retrieved 2012-12-31.
- ^ Rosenthal, Murray Wilford (2009-08-01). An Account of Oak Ridge National Laboratory's Thirteen Research Reactors (Report). Office of Scientific and Technical Information (OSTI). doi:10.2172/970897.
- ^ Higginbotham, Adam (4 February 2020). Midnight in Chernobyl: The Untold Story of the World's Greatest Nuclear Disaster. Simon and Schuster. ISBN 9781501134630.
- ^ "Taishan 1". World Nuclear Association. 2009-11-18. Retrieved 2025-01-25.
- ^ "Grand Gulf 1". World Nuclear Association. 1974-05-04. Retrieved 2025-01-25.
- ^ "Civaux 1". World Nuclear Association. 1988-10-15. Retrieved 2025-01-25.
- ^ "Plutonium: The First 50 Years". FAS Project on Government Secrecy (1991-2021). 1994-09-30. Retrieved 2024-12-24.
- ^ Carr, Alan (2020-12-08). Beyond the Moon [Slides] (Report). Office of Scientific and Technical Information (OSTI). doi:10.2172/1735863.
- ^ "Plutonium: The First 50 Years". FAS Project on Government Secrecy (1991-2021). 1994-09-30. Retrieved 2024-12-24.
- ^ Settimo, D (2008-07-01). "Creys-Malville (Superphenix) decommissioning program and sodium treatment". OSTI.GOV. Retrieved 2024-11-22.
- ^ "PRIS – Reactor Details". Archived from the original on 22 September 2018. Retrieved 27 April 2019.
- ^ Josephson, Paul R. (1987). "Early years of Soviet nuclear physics". Bulletin of the Atomic Scientists. 43 (10): 36–39. doi:10.1080/00963402.1987.11459617. ISSN 0096-3402.
- ^ WITTJE, ROLAND (2004-09-01). "A proton accelerator in Trondheim in the 1930s". Historical Studies in the Physical and Biological Sciences. 35 (1). University of California Press: 115–152. doi:10.1525/hsps.2004.35.1.115. ISSN 0890-9997.
- ^ "Jean Frédéric Joliot, 1900-1958". Biographical Memoirs of Fellows of the Royal Society. 6: 86–105. 1960. doi:10.1098/rsbm.1960.0026. ISSN 0080-4606.
- ^ "National General Election VEP Turnout Rates, 1789-Present". United States Election Project. CQ Press. Archived from the original on July 25, 2014. Retrieved February 28, 2023.
- ^ Jenkins, Landis & Miller 2003, p. 5–7.
- ^ Jenkins, Landis & Miller 2003, p. 8.
- ^ Jenkins, Landis & Miller 2003, p. 9.
- ^ Jenkins, Landis & Miller 2003, p. 10.
- ^ Jenkins, Landis & Miller 2003, p. 11.
- ^ Jenkins, Landis & Miller 2003, p. 12.
- ^ Miller 1983.
- ^ Jenkins, Landis & Miller 2003, p. 13.
- ^ Jenkins, Landis & Miller 2003, p. 14.
- ^ Jenkins, Landis & Miller 2003, p. 15.
- ^ Jenkins, Landis & Miller 2003, p. 16.
- ^ Jenkins, Landis & Miller 2003, p. 17.
- ^ Jenkins, Landis & Miller 2003, p. 18.
- ^ Jenkins, Landis & Miller 2003, p. 19.
- ^ Jenkins, Landis & Miller 2003, p. 20.
- ^ Jenkins, Landis & Miller 2003, p. 21–22.
- ^ Jenkins, Landis & Miller 2003, p. 23.
- ^ "X-16". Global security, accessed 11 May 2010.
- ^ Jenkins, Landis & Miller 2003, p. 24.
- ^ Jenkins, Landis & Miller 2003, p. 25.
- ^ Jenkins, Landis & Miller 2003, p. 26.
- ^ a b c d Parsch 2024, "Missing Designations"
- ^ Jenkins, Landis & Miller 2003, p. 27.
- ^ Jenkins, Landis & Miller 2003, p. 28.
- ^ Jenkins, Landis & Miller 2003, p. 29.
- ^ Jenkins, Landis & Miller 2003, p. 30.
- ^ Jenkins, Landis & Miller 2003, p. 31.
- ^ Jenkins, Landis & Miller 2003, p. 32.
- ^ Jenkins, Landis & Miller 2003, p. 33.
- ^ Jenkins, Landis & Miller 2003, p. 34.
- ^ Jenkins, Landis & Miller 2003, p. 35.
- ^ Jenkins, Landis & Miller 2003, p. 36.
- ^ Jenkins, Landis & Miller 2003, p. 37.
- ^ Jenkins, Landis & Miller 2003, p. 38.
- ^ Jenkins, Landis & Miller 2003, p. 39.
- ^ Jenkins, Landis & Miller 2003, p. 40–41.
- ^ Jenkins, Landis & Miller 2003, p. 42.
- ^ Jenkins, Landis & Miller 2003, p. 43.
- ^ Jenkins, Landis & Miller 2003, p. 44–45.
- ^ Jenkins, Landis & Miller 2003, p. 46.
- ^ Jenkins, Landis & Miller 2003, p. 47.
- ^ Jenkins, Landis & Miller 2003, p. 48.
- ^ Jenkins, Landis & Miller 2003, p. 49.
- ^ Jenkins, Landis & Miller 2003, p. 50.
- ^ Jenkins, Landis & Miller 2003, p. 51.
- ^ Jenkins, Landis & Miller 2003, p. 52.
- ^ Jenkins, Landis & Miller 2003, p. 53.
- ^ Jenkins, Landis & Miller 2003, p. 54.
- ^ Jenkins, Landis & Miller 2003, p. 55.
- ^ Jenkins, Landis & Miller 2003, p. 56.
- ^ Jenkins, Landis & Miller 2003, p. 57.
- ^ Jenkins, Landis & Miller 2003, p. 58.
- ^ Parsch 2024, "DOD 4120.15-L"
- ^ Jenkins, Landis & Miller 2003, p. 60.
- ^ "X-51 Waverider makes historic hypersonic flight". US Air Force Public Affairs. 26 May 2010. Retrieved 27 May 2010.
- ^ "X-51 Scramjet Engine Demonstrator - WaveRider" globalsecurity.org. Accessed 2010-05-11.
- ^ Jordan 2006
- ^ 412015-L
- ^ Kaufman 2009
- ^ Norris 2012
- ^ a b Harrington, J.D.; Kamlet, Matt; Barnstorff, Kathy (17 June 2016). "NASA Hybrid Electric Research Plane Gets X Number, New Name". NASA.gov. NASA. Retrieved 17 June 2016.
- ^ The Air Force Valkyrie Drone, a Sidekick for Human-Piloted Planes, Will Fly This Year
- ^ Jim, Banke (27 June 2018). "NASA's Experimental Supersonic Aircraft Now Known as X-59 QueSST". NASA. Retrieved 28 June 2018.
- ^ "U.S. Air Force Designates GO1 Hypersonic Flight Research Vehicle as X-60A". generationorbit.com. 4 October 2018. Retrieved 4 October 2018.
- ^ "Earthquake damage delays Gremlins trial". Flight International. 24 September 2019. Retrieved 28 October 2019.
- ^ "Dynetics X-61A Gremlins makes first flight, but destroyed after parachute fails". Flight International. 17 January 2020. Retrieved 13 February 2020.
- ^ Giancarlo Casem (30 Jul 2021) NF-16D VISTA becomes X-62A, paves way for Skyborg autonomous flight tests
- ^ Hadley, Greg (2023-05-16). "Meet the X-65: DARPA's New Plane Has No External Control Surfaces". Air & Space Forces Magazine. Retrieved 2023-05-29.
- ^ O’Shea, Claire (12 June 2023). "Next Generation Experimental Aircraft Becomes NASA's Newest X-Plane". NASA. Retrieved 13 June 2023.