Jump to content

User:Trigiant

From Wikipedia, the free encyclopedia

Riccardo D'Auria

[edit]

Riccardo D'Auria (born 1940 in Rome, Italy) is an Italian theoretical physicist and an emeritus full professor of the Polytechnic University of Turin.

Early life and education

[edit]

Riccardo D'Auria was born in Rome, Italy in 1940. He attended high school for classical studies in Turin and graduated in Physics at the University of Turin, with Prof. Tullio Regge as supervisor.

Career

[edit]

He was an associate professor at the University of Turin, a full professor at University of Padua and, eventually, at the Polytechnic University of Turin. There he founded a theoretical physics group, oriented towards particle physics, field theory, gravity and supergravity. From 1996 to 2000 he was director of the Department of Physics of the Polytechnic University of Turin.

He spent several extended periods at CERN and at the UCLA University (USA).

Contributions

[edit]

Among his major contributions in theoretical physics, of particular note are the following.

In collaboration with a group of string theorists, he proved, in the early years of superstring theory, the possibility of introducing internal flavour symmetry and color symmetry in a string algebra [1].

He developed, in collaboration with Pietro G. Frè (and following a proposal by Y. Ne'eman and T. Regge[2]), a new approach to supergravity called geometric or rheonomic approach, obtaining several new results. Of particular interest is the study of theories where the physical fields include p-forms of degree higher than one, in particular, the eleven-dimensional supergravity, the low-energy description of M-theory.  By a clever generalisation of the Cartan-Maurer equations of an ordinary (graded) Lie algebra, a new graded algebra was introduced called Cartan integrable system, by means of which a geometric approach to higher-dimensional theories can be realised [3].

It was recently discovered by mathematicians that this structure is the first example of an L-infinity algebradeveloped in mathematics some ten years after their original results, and formulated in the space dual to the space of differential p-forms.

In collaboration with Tullio Regge, a new advance in gravity theory was accomplished: the explicit construction of an asymptotically flat gravitational instanton solution [4] of the four-dimensional Einstein theory.

R. D'Auria completed with Leonardo Castellani and Sergio Ferrara the full formulation of Special Kaehler Geometry, which allows the precise formulation of N=2 supergravity in four dimensions[5]. This eventually led him, within a different collaboration, to obtain the important result of constructing the most general matter-coupled N=2 supergravity in four dimensions [6].

Essays and Literature

[edit]

He published the following books[7][8]

References

[edit]
  1. ^ Ademollo, M.; Brink, L.; D'Adda, A.; D'Auria, R.; Napolitano, E.; Sciuto, S.; Del Giudice, E.; Di Vecchia, P.; Ferrara, S.; Gliozzi, F.; Musto, R.; Pettorino, R.; Schwarz, J.H. (1976). "Dual string with U(1) colour symmetry". Nuclear Physics B. 111 (1): 77–110. doi:10.1016/0550-3213(76)90483-1.
  2. ^ Ne'eman, Yuval; Regge, Tullio (1978). "Gravity and supergravity as gauge theories on a group manifold". Physics Letters B. 74 (1–2): 54–56. doi:10.1016/0370-2693(78)90058-8.
  3. ^ "Geometric supergravity in D = 11 and iot hidden supergroup". Nuclear Physics B. 206 (3): 496. 1982. doi:10.1016/0550-3213(82)90281-4.
  4. ^ D'Auria, R.; Regge, T. (1982). "Gravity theories with asymptotically flat instantons". Nuclear Physics B. 195 (2): 308–324. doi:10.1016/0550-3213(82)90402-3.
  5. ^ Castellani, L; D'Auria, R; Ferrara, S (1990-10-01). "Special geometry without special coordinates". Classical and Quantum Gravity. 7 (10): 1767–1790. doi:10.1088/0264-9381/7/10/009. ISSN 0264-9381.
  6. ^ Andrianopoli, L.; Bertolini, M.; Ceresole, A.; D'Auria, R.; Ferrara, S.; Fré, P.; Magri, T. (1997). "N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance gaugings and the momentum map". Journal of Geometry and Physics. 23 (2): 111–189. doi:10.1016/S0393-0440(97)00002-8.
  7. ^ Castellani, Leonardo; D'Auria, Riccardo; Fré, Pietro (1991). Supergravity and Superstrings: A Geometric Perspective: (In 3 Volumes). WORLD SCIENTIFIC. doi:10.1142/0224. ISBN 978-9971-5-0037-5.
  8. ^ D'Auria, Riccardo; Trigiante, Mario (2016). From Special Relativity to Feynman Diagrams: A Course in Theoretical Particle Physics for Beginners. UNITEXT for Physics. Cham: Springer International Publishing. doi:10.1007/978-3-319-22014-7. ISBN 978-3-319-22013-0.