Jump to content

6-Methoxytryptamine

From Wikipedia, the free encyclopedia
6-Methoxytryptamine
Clinical data
Other names6-Methoxy-T; 6-MeO-T; PAL-263; PAL263
Drug classMonoamine releasing agent; Serotonin–norepinephrine–dopamine releasing agent; Serotonin receptor modulator
ATC code
  • None
Identifiers
  • 2-(6-methoxy-1H-indol-3-yl)ethanamine
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
Chemical and physical data
FormulaC11H14N2O
Molar mass190.246 g·mol−1
3D model (JSmol)
  • COC1=CC2=C(C=C1)C(=CN2)CCN
  • InChI=1S/C11H14N2O/c1-14-9-2-3-10-8(4-5-12)7-13-11(10)6-9/h2-3,6-7,13H,4-5,12H2,1H3
  • Key:VOCGEKMEZOPDFP-UHFFFAOYSA-N

6-Methoxytryptamine (6-MeO-T; developmental code name PAL-263) is a monoamine releasing agent and serotonin receptor modulator of the tryptamine family.[1] It is a positional isomer of 5-methoxytryptamine.[1]

Pharmacology

[edit]

6-Methoxytryptamine is a potent serotonin–norepinephrine–dopamine releasing agent (SNDRA), with EC50Tooltip half-maximal effective concentration values for monoamine release induction of 53.8 nM for serotonin, 113 nM for dopamine, and 465 nM for norepinephrine in rat brain synaptosomes.[1] It is also a full agonist of the serotonin 5-HT2A receptor, but with very low potency; its EC50 and EmaxTooltip maximal efficacy at this receptor were 2,443 nM and 111%, respectively.[1] In a series of tryptamine derivatives, 6-methoxytryptamine was the least potent serotonin 5-HT2A receptor agonist, while 5-methoxytryptamine was the most potent serotonin 5-HT2A receptor agonist, with 5-methoxytryptamine showing approximately 4,857-fold higher potency in terms of serotonin 5-HT2A receptor agonism than 6-methoxytryptamine.[1] Conversely, whereas 6-methoxytryptamine was a potent monoamine releasing agent, 5-methoxytryptamine showed very low potency in this regard.[1]

History

[edit]

6-Methoxytryptamine was first described in the scientific literature by the 1950s.[2]

Derivatives

[edit]

Certain β-carbolines and harmala alkaloids, such as harmine, harmaline, and tetrahydroharmine, are notable in being naturally occurring cyclized tryptamine derivatives of 6-methoxytryptamine.[3][4] The same is true of certain iboga alkaloids, such as tabernanthine and ibogaline.[5][6][7][8] Tabernanthalog (DLX-007) is a synthetic simplified ibogalog analogue of tabernanthine that is under development for use as a potential pharmaceutical drug in the treatment of neuropsychiatric disorders.[9][10]

See also

[edit]

References

[edit]
  1. ^ a b c d e f Blough BE, Landavazo A, Partilla JS, Decker AM, Page KM, Baumann MH, Rothman RB (October 2014). "Alpha-ethyltryptamines as dual dopamine-serotonin releasers". Bioorg Med Chem Lett. 24 (19): 4754–4758. doi:10.1016/j.bmcl.2014.07.062. PMC 4211607. PMID 25193229.
  2. ^ Vane JR (March 1959). "The relative activities of some tryptamine analogues on the isolated rat stomach strip preparation". Br J Pharmacol Chemother. 14 (1): 87–98. doi:10.1111/j.1476-5381.1959.tb00933.x. PMC 1481817. PMID 13651584.
  3. ^ Shulgin, Alexander; Shulgin, Ann (September 1997). TiHKAL: The Continuation. Berkeley, California: Transform Press. ISBN 0-9630096-9-9. OCLC 38503252.
  4. ^ Grella B, Dukat M, Young R, Teitler M, Herrick-Davis K, Gauthier CB, Glennon RA (April 1998). "Investigation of hallucinogenic and related beta-carbolines". Drug Alcohol Depend. 50 (2): 99–107. doi:10.1016/s0376-8716(97)00163-4. PMID 9649961.
  5. ^ Popik, Piotr; Skolnick, Phil (1999). "Pharmacology of Ibogaine and Ibogaine-Related Alkaloids". The Alkaloids: Chemistry and Biology. Vol. 52. Elsevier. p. 197–231. doi:10.1016/s0099-9598(08)60027-9. ISBN 978-0-12-469552-8. Retrieved 17 June 2025.
  6. ^ Lavaud C, Massiot G (2017). "The Iboga Alkaloids" (PDF). Prog Chem Org Nat Prod. 105: 89–136. doi:10.1007/978-3-319-49712-9_2. PMID 28194562.
  7. ^ Iyer RN, Favela D, Zhang G, Olson DE (March 2021). "The iboga enigma: the chemistry and neuropharmacology of iboga alkaloids and related analogs". Nat Prod Rep. 38 (2): 307–329. doi:10.1039/d0np00033g. PMC 7882011. PMID 32794540.
  8. ^ Hughes, Alexander J.; Hamelink, Charles R.; Townsend, Steven D. (5 September 2024). "Disrupting Substance Use Disorder: The Chemistry of Iboga Alkaloids". European Journal of Organic Chemistry. doi:10.1002/ejoc.202400432. ISSN 1434-193X.
  9. ^ Chen MJ, Chen-Li D, Chisamore N, Husain MI, Di Vincenzo JD, Mansur RB, Phan L, Johnson D, McIntyre RS, Rosenblat JD (July 2025). "Non-hallucinogenic psychedelics for mood and anxiety disorders: A systematic review". Psychiatry Res. 349: 116532. doi:10.1016/j.psychres.2025.116532. PMID 40354769.
  10. ^ Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. (January 2021). "A non-hallucinogenic psychedelic analogue with therapeutic potential". Nature. 589 (7842): 474–479. Bibcode:2021Natur.589..474C. doi:10.1038/s41586-020-3008-z. PMC 7874389. PMID 33299186.
[edit]