Jump to content

PTPN11

From Wikipedia, the free encyclopedia

PTPN11
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesPTPN11, BPTP3, CFC, JMML, METCDS, NS1, PTP-1D, PTP2C, SH-PTP2, SH-PTP3, SHP2, protein tyrosine phosphatase, non-receptor type 11, protein tyrosine phosphatase non-receptor type 11
External IDsOMIM: 176876; MGI: 99511; HomoloGene: 2122; GeneCards: PTPN11; OMA:PTPN11 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002834
NM_080601
NM_001330437
NM_001374625
NM_018508

NM_001109992
NM_011202

RefSeq (protein)

NP_001317366
NP_002825
NP_542168
NP_001361554

NP_001103462
NP_035332

Location (UCSC)Chr 12: 112.42 – 112.51 MbChr 5: 121.27 – 121.33 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) also known as protein-tyrosine phosphatase 1D (PTP-1D), Src homology region 2 domain-containing phosphatase-2 (SHP-2), or protein-tyrosine phosphatase 2C (PTP-2C) is an enzyme that in humans is encoded by the PTPN11 gene. PTPN11 is a protein tyrosine phosphatase (PTP) Shp2.[5][6]

PTPN11 is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains two tandem Src homology-2 domains, which function as phospho-tyrosine binding domains and mediate the interaction of this PTP with its substrates. This PTP is widely expressed in most tissues and plays a regulatory role in various cell signaling events that are important for a diversity of cell functions, such as mitogenic activation, metabolic control, transcription regulation, and cell migration. Mutations in this gene are a cause of Noonan syndrome as well as acute myeloid leukemia.[7]

Structure

[edit]

PTPN11 encodes the protein tyrosine phosphatase SHP2, which has a modular structure essential for its regulatory function in cell signaling. SHP2 consists of two tandem Src homology 2 (SH2) domains at the N-terminus (N-SH2 and C-SH2), followed by a catalytic protein tyrosine phosphatase (PTP) domain and a C-terminal tail containing tyrosyl phosphorylation sites.[8][9][10] In its inactive, auto-inhibited conformation, the N-SH2 domain binds intramolecularly to the PTP catalytic domain, blocking substrate access to the active site.[11][9] Upon binding to phosphotyrosyl residues on target proteins, the N-SH2 domain undergoes a conformational change that releases the PTP domain, thereby activating the enzyme.[11][8][9] The catalytic domain itself adopts a conserved fold characteristic of classical PTPs, featuring a catalytic loop (WPD loop) that undergoes conformational changes during substrate binding and catalysis.[11] This structural arrangement allows SHP2 to tightly regulate signaling pathways by selectively dephosphorylating substrates involved in cell growth, differentiation, and migration.[8][10] Mutations disrupting the interface between the N-SH2 and PTP domains can lead to constitutive activation or impairment of SHP2, underlying diseases such as Noonan syndrome and certain leukemias.[12][10] The overall structure has been elucidated by multiple crystallographic studies, revealing both the auto-inhibited and active states, which provide insight into its mechanism of regulation and function in diverse cellular contexts.[11][9][10]

Function

[edit]

PTPN11 encodes SHP2, a ubiquitously expressed protein tyrosine phosphatase that plays a important role in regulating cell signaling pathways, most notably the RAS/MAPK cascade, which controls cell proliferation, differentiation, migration, and survival. SHP2 acts as a positive regulator of signal transduction by dephosphorylating specific phosphotyrosine residues on target proteins, thereby facilitating the propagation of growth factor and cytokine signals.[11] During embryonic development, SHP2 is essential for the formation of the heart, blood cells, bones, and other tissues.[12] Germline mutations in PTPN11 cause developmental disorders such as Noonan syndrome and LEOPARD syndrome, while somatic mutations are frequently implicated in hematologic malignancies and solid tumors by promoting aberrant activation of oncogenic pathways.[13][14] In cancer, SHP2 can function as an oncogenic driver by sustaining RAS/RAF/MAPK signaling and supporting tumor cell growth and survival.[15] Thus, PTPN11/SHP2 is a critical regulator of both normal cellular processes and disease states, with its dysregulation contributing to developmental syndromes and oncogenesis.

Clinical significance

[edit]

Missense mutations in the PTPN11 locus are associated with both Noonan syndrome and Leopard syndrome. At least 79 disease-causing mutations in this gene have been discovered.[16]

Noonan syndrome

[edit]

In the case of Noonan syndrome, mutations are broadly distributed throughout the coding region of the gene but all appear to result in hyper-activated, or unregulated mutant forms of the protein. Most of these mutations disrupt the binding interface between the N-SH2 domain and catalytic core necessary for the enzyme to maintain its auto-inhibited conformation.[17]

Leopard syndrome

[edit]

The mutations that cause Leopard syndrome are restricted regions affecting the catalytic core of the enzyme producing catalytically impaired Shp2 variants.[18] It is currently unclear how mutations that give rise to mutant variants of Shp2 with biochemically opposite characteristics result in similar human genetic syndromes.

Metachondromatosis

[edit]

It has also been associated with metachondromatosis.[19]

Cancer

[edit]

Patients with a subset of Noonan syndrome PTPN11 mutations also have a higher prevalence of juvenile myelomonocytic leukemias (JMML). Activating Shp2 mutations have also been detected in neuroblastoma, melanoma, acute myeloid leukemia, breast cancer, lung cancer, colorectal cancer.[20] Recently, a relatively high prevalence of PTPN11 mutations (24%) were detected by next-generation sequencing in a cohort of NPM1-mutated acute myeloid leukemia patients,[21] although the prognostic significance of such associations has not been clarified. These data suggests that Shp2 may be a proto-oncogene. However, it has been reported that PTPN11/Shp2 can act as either tumor promoter or suppressor.[22] In aged mouse model, hepatocyte-specific deletion of PTPN11/Shp2 promotes inflammatory signaling through the STAT3 pathway and hepatic inflammation/necrosis, resulting in regenerative hyperplasia and spontaneous development of tumors. Decreased PTPN11/Shp2 expression was detected in a subfraction of human hepatocellular carcinoma (HCC) specimens.[22] The bacterium Helicobacter pylori has been associated with gastric cancer, and this is thought to be mediated in part by the interaction of its virulence factor CagA with SHP2.[23]

H Pylori CagA virulence factor

[edit]

CagA is a protein and virulence factor inserted by Helicobacter pylori into gastric epithelia. Once activated by SRC phosphorylation, CagA binds to SHP2, allosterically activating it. This leads to morphological changes, abnormal mitogenic signals and sustained activity can result in apoptosis of the host cell. Epidemiological studies have shown roles of cagA- positive H. pylori in the development of atrophic gastritis, peptic ulcer disease and gastric carcinoma.[24]

Interactions

[edit]

PTPN11 has been shown to interact with

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000179295Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000043733Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Jamieson CR, van der Burgt I, Brady AF, van Reen M, Elsawi MM, Hol F, et al. (December 1994). "Mapping a gene for Noonan syndrome to the long arm of chromosome 12". Nature Genetics. 8 (4): 357–360. doi:10.1038/ng1294-357. PMID 7894486. S2CID 1582162.
  6. ^ Freeman RM, Plutzky J, Neel BG (December 1992). "Identification of a human Src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew". Proceedings of the National Academy of Sciences of the United States of America. 89 (23): 11239–11243. Bibcode:1992PNAS...8911239F. doi:10.1073/pnas.89.23.11239. PMC 50525. PMID 1280823.
  7. ^ "Entrez Gene: PTPN11 protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1)".
  8. ^ a b c Neel BG, Gu H, Pao L (June 2003). "The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling". Trends in Biochemical Sciences. 28 (6): 284–293. doi:10.1016/S0968-0004(03)00091-4. PMID 12826400.
  9. ^ a b c d Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, et al. (June 2003). "Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia". Nature Genetics. 34 (2): 148–150. doi:10.1038/ng1156. PMID 12717436.
  10. ^ a b c d Neel BG, Gu H, Pao L (June 2003). "The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling". Trends in Biochemical Sciences. 28 (6): 284–293. doi:10.1016/S0968-0004(03)00091-4. PMID 12826400.
  11. ^ a b c d e Clandinin TR, DeModena JA, Sternberg PW (February 1998). "Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans". Cell. 92 (4): 523–533. doi:10.1016/s0092-8674(00)80945-9. PMID 9491893.
  12. ^ a b Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, et al. (December 2001). "Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome". Nature Genetics. 29 (4): 465–468. doi:10.1038/ng772. PMID 11704759.
  13. ^ Li SM (2016). "[The Biological Function of SHP2 in Human Disease]". Molekuliarnaia Biologiia (in Russian). 50 (1): 27–33. doi:10.7868/S0026898416010110. PMID 27028808.
  14. ^ Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V, et al. (February 2006). "Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease". American Journal of Human Genetics. 78 (2): 279–290. doi:10.1086/499925. PMC 1380235. PMID 16358218.
  15. ^ Hill KS, Roberts ER, Wang X, Marin E, Park TD, Son S, et al. (February 2019). "PTPN11 Plays Oncogenic Roles and Is a Therapeutic Target for BRAF Wild-Type Melanomas". Molecular Cancer Research : MCR. 17 (2): 583–593. doi:10.1158/1541-7786.MCR-18-0777. PMC 6386183. PMID 30355677.
  16. ^ Šimčíková D, Heneberg P (December 2019). "Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases". Scientific Reports. 9 (1): 18577. Bibcode:2019NatSR...918577S. doi:10.1038/s41598-019-54976-4. PMC 6901466. PMID 31819097.
  17. ^ Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, et al. (January 2007). "Germline gain-of-function mutations in SOS1 cause Noonan syndrome". Nature Genetics. 39 (1): 70–74. doi:10.1038/ng1926. PMID 17143285. S2CID 10222262.
  18. ^ Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG (March 2006). "PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects". Journal of Biological Chemistry. 281 (10): 6785–6792. doi:10.1074/jbc.M513068200. PMID 16377799.
  19. ^ Sobreira NL, Cirulli ET, Avramopoulos D, Wohler E, Oswald GL, Stevens EL, et al. (June 2010). "Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene". Plos Genetics. 6 (6): e1000991. doi:10.1371/journal.pgen.1000991. PMC 2887469. PMID 20577567.
  20. ^ Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, et al. (December 2004). "Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia". Cancer Research. 64 (24): 8816–8820. doi:10.1158/0008-5472.CAN-04-1923. PMID 15604238.
  21. ^ Patel SS, Kuo FC, Gibson CJ, Steensma DP, Soiffer RJ, Alyea EP, et al. (May 2018). "High NPM1 mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML". Blood. 131 (25): 2816–2825. doi:10.1182/blood-2018-01-828467. PMC 6265642. PMID 29724895.
  22. ^ a b c Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, et al. (May 2011). "Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis". Cancer Cell. 19 (5): 629–639. doi:10.1016/j.ccr.2011.03.023. PMC 3098128. PMID 21575863.
  23. ^ a b Hatakeyama M, Higashi H (December 2005). "Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis". Cancer Science. 96 (12): 835–843. doi:10.1111/j.1349-7006.2005.00130.x. PMC 11159386. PMID 16367902. S2CID 5721063.
  24. ^ Hatakeyama M (September 2004). "Oncogenic mechanisms of the Helicobacter pylori CagA protein". Nature Reviews. Cancer. 4 (9): 688–694. doi:10.1038/nrc1433. PMID 15343275. S2CID 1218835.
  25. ^ Tanaka Y, Tanaka N, Saeki Y, Tanaka K, Murakami M, Hirano T, et al. (August 2008). "c-Cbl-dependent monoubiquitination and lysosomal degradation of gp130". Molecular and Cellular Biology. 28 (15): 4805–4818. doi:10.1128/MCB.01784-07. PMC 2493370. PMID 18519587.
  26. ^ Tauchi T, Feng GS, Marshall MS, Shen R, Mantel C, Pawson T, et al. (October 1994). "The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells". Journal of Biological Chemistry. 269 (40): 25206–25211. doi:10.1016/S0021-9258(17)31518-1. PMID 7523381.
  27. ^ Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA (April 1998). "SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain". Molecular and Cellular Biology. 18 (4): 2089–2099. doi:10.1128/MCB.18.4.2089. PMC 121439. PMID 9528781.
  28. ^ Ilan N, Cheung L, Pinter E, Madri JA (July 2000). "Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation". Journal of Biological Chemistry. 275 (28): 21435–21443. doi:10.1074/jbc.M001857200. PMID 10801826.
  29. ^ Pumphrey NJ, Taylor V, Freeman S, Douglas MR, Bradfield PF, Young SP, et al. (April 1999). "Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31". FEBS Letters. 450 (1–2): 77–83. doi:10.1016/S0014-5793(99)00446-9. PMID 10350061. S2CID 31471121.
  30. ^ Hua CT, Gamble JR, Vadas MA, Jackson DE (October 1998). "Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1). Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates". Journal of Biological Chemistry. 273 (43): 28332–28340. doi:10.1074/jbc.273.43.28332. PMID 9774457.
  31. ^ Jackson DE, Ward CM, Wang R, Newman PJ (March 1997). "The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling". Journal of Biological Chemistry. 272 (11): 6986–6993. doi:10.1074/jbc.272.11.6986. PMID 9054388.
  32. ^ Huber M, Izzi L, Grondin P, Houde C, Kunath T, Veillette A, et al. (January 1999). "The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells". Journal of Biological Chemistry. 274 (1): 335–344. doi:10.1074/jbc.274.1.335. PMID 9867848.
  33. ^ Schulze WX, Deng L, Mann M (2005). "Phosphotyrosine interactome of the ErbB-receptor kinase family". Molecular Systems Biology. 1 (1): 2005.0008. doi:10.1038/msb4100012. PMC 1681463. PMID 16729043.
  34. ^ Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, et al. (September 1995). "Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C". Journal of Biological Chemistry. 270 (36): 21277–21284. doi:10.1074/jbc.270.36.21277. PMID 7673163.
  35. ^ a b c Lai LA, Zhao C, Zhang EE, Feng GS (2004). "14 The Shp-2 tyrosine phosphatase". In Ariño J, Alexander D (eds.). Protein phosphatases. Springer. pp. 275–299. ISBN 978-3-540-20560-9.
  36. ^ a b Neel BG, Gu H, Pao L (June 2003). "The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling". Trends in Biochemical Sciences. 28 (6): 284–293. doi:10.1016/S0968-0004(03)00091-4. ISSN 0968-0004. PMID 12826400.
  37. ^ Delahaye L, Rocchi S, Van Obberghen E (February 2000). "Potential involvement of FRS2 in insulin signaling". Endocrinology. 141 (2): 621–628. doi:10.1210/endo.141.2.7298. PMID 10650943.
  38. ^ Kurokawa K, Iwashita T, Murakami H, Hayashi H, Kawai K, Takahashi M (April 2001). "Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction". Oncogene. 20 (16): 1929–1938. doi:10.1038/sj.onc.1204290. PMID 11360177. S2CID 25346661.
  39. ^ a b c Hadari YR, Kouhara H, Lax I, Schlessinger J (July 1998). "Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation". Molecular and Cellular Biology. 18 (7): 3966–3973. doi:10.1128/MCB.18.7.3966. PMC 108981. PMID 9632781.
  40. ^ Saito Y, Hojo Y, Tanimoto T, Abe J, Berk BC (June 2002). "Protein kinase C-alpha and protein kinase C-epsilon are required for Grb2-associated binder-1 tyrosine phosphorylation in response to platelet-derived growth factor". Journal of Biological Chemistry. 277 (26): 23216–23222. doi:10.1074/jbc.M200605200. PMID 11940581.
  41. ^ Rocchi S, Tartare-Deckert S, Murdaca J, Holgado-Madruga M, Wong AJ, Van Obberghen E (July 1998). "Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules". Molecular Endocrinology. 12 (7). Baltimore, Md.: 914–923. doi:10.1210/mend.12.7.0141. PMID 9658397.
  42. ^ a b Boudot C, Kadri Z, Petitfrère E, Lambert E, Chrétien S, Mayeux P, et al. (October 2002). "Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells". Cellular Signalling. 14 (10): 869–878. doi:10.1016/S0898-6568(02)00036-0. PMID 12135708.
  43. ^ Lynch DK, Daly RJ (January 2002). "PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2". The EMBO Journal. 21 (1–2): 72–82. doi:10.1093/emboj/21.1.72. PMC 125816. PMID 11782427.
  44. ^ Zhao C, Yu DH, Shen R, Feng GS (July 1999). "Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1". Journal of Biological Chemistry. 274 (28): 19649–19654. doi:10.1074/jbc.274.28.19649. PMID 10391903.
  45. ^ Crouin C, Arnaud M, Gesbert F, Camonis J, Bertoglio J (April 2001). "A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners". FEBS Letters. 495 (3): 148–153. doi:10.1016/S0014-5793(01)02373-0. PMID 11334882. S2CID 24499468.
  46. ^ Wolf I, Jenkins BJ, Liu Y, Seiffert M, Custodio JM, Young P, et al. (January 2002). "Gab3, a New DOS/Gab Family Member, Facilitates Macrophage Differentiation". Molecular and Cellular Biology. 22 (1): 231–244. doi:10.1128/MCB.22.1.231-244.2002. ISSN 0270-7306. PMC 134230. PMID 11739737. and associates transiently with the SH2 domain-containing proteins p85 and SHP2
  47. ^ a b c Lehmann U, Schmitz J, Weissenbach M, Sobota RM, Hortner M, Friederichs K, et al. (January 2003). "SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130". Journal of Biological Chemistry. 278 (1): 661–671. doi:10.1074/jbc.M210552200. PMID 12403768.
  48. ^ Anhuf D, Weissenbach M, Schmitz J, Sobota R, Hermanns HM, Radtke S, et al. (September 2000). "Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation". Journal of Immunology. 165 (5). Baltimore, Md.: 2535–2543. doi:10.4049/jimmunol.165.5.2535. PMID 10946280.
  49. ^ Kim H, Baumann H (December 1997). "Transmembrane domain of gp130 contributes to intracellular signal transduction in hepatic cells". Journal of Biological Chemistry. 272 (49): 30741–30747. doi:10.1074/jbc.272.49.30741. PMID 9388212.
  50. ^ a b c Yin T, Shen R, Feng GS, Yang YC (January 1997). "Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases". Journal of Biological Chemistry. 272 (2): 1032–1037. doi:10.1074/jbc.272.2.1032. PMID 8995399.
  51. ^ Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE (June 2000). "Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk". Journal of Biological Chemistry. 275 (23): 17263–17268. doi:10.1074/jbc.M000689200. PMID 10747947.
  52. ^ Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG (July 1994). "Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras". Proceedings of the National Academy of Sciences of the United States of America. 91 (15): 7335–7339. Bibcode:1994PNAS...91.7335B. doi:10.1073/pnas.91.15.7335. PMC 44394. PMID 8041791.
  53. ^ Ward AC, Monkhouse JL, Hamilton JA, Csar XF (November 1998). "Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor". Biochimica et Biophysica Acta. 1448 (1): 70–76. doi:10.1016/S0167-4889(98)00120-7. hdl:10536/DRO/DU:30096477. PMID 9824671.
  54. ^ Tang J, Feng GS, Li W (October 1997). "Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor". Oncogene. 15 (15): 1823–1832. doi:10.1038/sj.onc.1201351. PMID 9362449.
  55. ^ Tang H, Zhao ZJ, Huang XY, Landon EJ, Inagami T (April 1999). "Fyn kinase-directed activation of SH2 domain-containing protein-tyrosine phosphatase SHP-2 by Gi protein-coupled receptors in Madin-Darby canine kidney cells". Journal of Biological Chemistry. 274 (18): 12401–12407. doi:10.1074/jbc.274.18.12401. PMID 10212213.
  56. ^ Zhang S, Mantel C, Broxmeyer HE (March 1999). "Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells". Journal of Leukocyte Biology. 65 (3): 372–380. doi:10.1002/jlb.65.3.372. PMID 10080542. S2CID 38211235.
  57. ^ Wong L, Johnson GR (August 1996). "Epidermal growth factor induces coupling of protein-tyrosine phosphatase 1D to GRB2 via the COOH-terminal SH3 domain of GRB2". Journal of Biological Chemistry. 271 (35): 20981–20984. doi:10.1074/jbc.271.35.20981. PMID 8702859.
  58. ^ Stofega MR, Herrington J, Billestrup N, Carter-Su C (September 2000). "Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B". Molecular Endocrinology. 14 (9). Baltimore, Md.: 1338–1350. doi:10.1210/mend.14.9.0513. PMID 10976913.
  59. ^ Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J (June 1998). "Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins". Journal of Biological Chemistry. 273 (26): 15906–15912. doi:10.1074/jbc.273.26.15906. PMID 9632636.
  60. ^ Wang H, Lindsey S, Konieczna I, Bei L, Horvath E, Huang W, et al. (January 2009). "Constitutively active SHP2 cooperates with HoxA10 overexpression to induce acute myeloid leukemia". Journal of Biological Chemistry. 284 (4): 2549–2567. doi:10.1074/jbc.M804704200. PMC 2629090. PMID 19022774.
  61. ^ Maegawa H, Ugi S, Adachi M, Hinoda Y, Kikkawa R, Yachi A, et al. (March 1994). "Insulin receptor kinase phosphorylates protein tyrosine phosphatase containing Src homology 2 regions and modulates its PTPase activity in vitro". Biochemical and Biophysical Research Communications. 199 (2): 780–785. doi:10.1006/bbrc.1994.1297. PMID 8135823.
  62. ^ Kharitonenkov A, Schnekenburger J, Chen Z, Knyazev P, Ali S, Zwick E, et al. (December 1995). "Adapter function of protein-tyrosine phosphatase 1D in insulin receptor/insulin receptor substrate-1 interaction". Journal of Biological Chemistry. 270 (49): 29189–29193. doi:10.1074/jbc.270.49.29189. PMID 7493946.
  63. ^ Mañes S, Mira E, Gómez-Mouton C, Zhao ZJ, Lacalle RA, Martínez-A C (April 1999). "Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility". Molecular and Cellular Biology. 19 (4): 3125–3135. doi:10.1128/mcb.19.4.3125. PMC 84106. PMID 10082579.
  64. ^ Seely BL, Reichart DR, Staubs PA, Jhun BH, Hsu D, Maegawa H, et al. (August 1995). "Localization of the insulin-like growth factor I receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein". Journal of Biological Chemistry. 270 (32): 19151–19157. doi:10.1074/jbc.270.32.19151. PMID 7642582.
  65. ^ Kuhné MR, Pawson T, Lienhard GE, Feng GS (June 1993). "The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp". Journal of Biological Chemistry. 268 (16): 11479–11481. doi:10.1016/S0021-9258(19)50220-4. PMID 8505282.
  66. ^ Myers MG, Mendez R, Shi P, Pierce JH, Rhoads R, White MF (October 1998). "The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling". Journal of Biological Chemistry. 273 (41): 26908–26914. doi:10.1074/jbc.273.41.26908. PMID 9756938.
  67. ^ Tauchi T, Damen JE, Toyama K, Feng GS, Broxmeyer HE, Krystal G (June 1996). "Tyrosine 425 within the activated erythropoietin receptor binds Syp, reduces the erythropoietin required for Syp tyrosine phosphorylation, and promotes mitogenesis". Blood. 87 (11): 4495–4501. doi:10.1182/blood.V87.11.4495.bloodjournal87114495. PMID 8639815.
  68. ^ Maegawa H, Kashiwagi A, Fujita T, Ugi S, Hasegawa M, Obata T, et al. (November 1996). "SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates". Biochemical and Biophysical Research Communications. 228 (1): 122–127. doi:10.1006/bbrc.1996.1626. PMID 8912646.
  69. ^ Fournier N, Chalus L, Durand I, Garcia E, Pin JJ, Churakova T, et al. (August 2000). "FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells". Journal of Immunology. 165 (3). Baltimore, Md.: 1197–1209. doi:10.4049/jimmunol.165.3.1197. PMID 10903717.
  70. ^ Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, et al. (August 1997). "LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes". Immunity. 7 (2): 283–290. doi:10.1016/S1074-7613(00)80530-0. hdl:2066/26173. PMID 9285412.
  71. ^ Betts GN, van der Geer P, Komives EA (June 2008). "Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain". Journal of Biological Chemistry. 283 (23): 15656–15664. doi:10.1074/jbc.M709514200. PMC 2414285. PMID 18381291.
  72. ^ Keilhack H, Müller M, Böhmer SA, Frank C, Weidner KM, Birchmeier W, et al. (January 2001). "Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1". The Journal of Cell Biology. 152 (2): 325–334. doi:10.1083/jcb.152.2.325. PMC 2199605. PMID 11266449.
  73. ^ Lechleider RJ, Sugimoto S, Bennett AM, Kashishian AS, Cooper JA, Shoelson SE, et al. (October 1993). "Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor". Journal of Biological Chemistry. 268 (29): 21478–21481. doi:10.1016/S0021-9258(20)80562-6. PMID 7691811.
  74. ^ Chauhan D, Pandey P, Hideshima T, Treon S, Raje N, Davies FE, et al. (September 2000). "SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells". Journal of Biological Chemistry. 275 (36): 27845–27850. doi:10.1074/jbc.M003428200. PMID 10880513.
  75. ^ Howie D, Simarro M, Sayos J, Guirado M, Sancho J, Terhorst C (February 2000). "Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation". Blood. 99 (3): 957–965. doi:10.1182/blood.V99.3.957. PMID 11806999.
  76. ^ Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, et al. (November 2001). "Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells". The EMBO Journal. 20 (21): 5840–5852. doi:10.1093/emboj/20.21.5840. PMC 125701. PMID 11689425.
  77. ^ Chin H, Saito T, Arai A, Yamamoto K, Kamiyama R, Miyasaka N, et al. (October 1997). "Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells". Biochemical and Biophysical Research Communications. 239 (2): 412–417. doi:10.1006/bbrc.1997.7480. PMID 9344843.
  78. ^ a b Yu CL, Jin YJ, Burakoff SJ (January 2000). "Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation". Journal of Biological Chemistry. 275 (1): 599–604. doi:10.1074/jbc.275.1.599. PMID 10617656.
  79. ^ Chughtai N, Schimchowitsch S, Lebrun JJ, Ali S (August 2002). "Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells". Journal of Biological Chemistry. 277 (34): 31107–31114. doi:10.1074/jbc.M200156200. PMID 12060651.

Further reading

[edit]
[edit]